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Abstract—The recent launch of the Micius quantum-enabled
satellite heralds a major step forward for long-range quantum
communication. Using single-photon discrete-variable quantum
states, this exciting new development proves beyond any doubt
that all of the quantum protocols previously deployed over lim-
ited ranges in terrestrial experiments can in fact be translated to
global distances via the use of low-orbit satellites. In this paper we
survey the imminent extension of space-based quantum commu-
nication to the continuous-variable regime—the quantum regime
perhaps most closely related to classical wireless communications.
The continuous variable regime offers the potential for increased
communication performance, and represents the next major step
forward for quantum communications and the development of
the global quantum Internet.
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I. MOTIVATION AND INTRODUCTION

M
OORE’S Law has remained valid for half-a-century!

As a result, contemporary semi-conductor technology

is approaching nano-scale integration. Hence nano-technology

is about to enter the realms of quantum physics, where many

of the physical phenomena are rather different from those of

classical physics. Hence this treatise contributes towards com-

pleting the ‘quantum jig-saw puzzle’ by paving the way from

classical wireless systems to their perfectly secure quantum-

communications counterparts, as heralded in [1] and [2].

• The Inspiration: In order to circumvent the specific lim-

itations of the classical wireless systems detailed in [1],

we set out to bridge the separate classical and quan-

tum worlds into a joint universe, with the objective of

contributing to perfectly secure quantum-aided commu-

nications for anyone, anywhere, anytime across the globe,
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Fig. 1. Stylized vision of future global quantum communications unifying
the separate classical and quantum systems into a joint secure universe for
anyone, anywhere, anytime.

as indicated by the stylized vision of the near-future

quantum communications scenario seen in Fig. 1.

• The Reality: However, quantum processing is far from

being flawless - it has substantial challenges, as detailed

in this contribution. Nonetheless, at the time of writing

long-range quantum communications via satellites has

become a reality.

Amongst its numerous intriguing attributes, quantum com-

munication has the potential to achieve secure communications

at confidence levels simply unattainable in classical commu-

nications settings. This is due to the fact that quantum physics

introduces a range of phenomena which have no counterpart

in the classical domain, such as quantum entanglement and

the superposition of quantum states.1 The exploitation of such

effects, both before and after the transmission of information

in the quantum domain, can in effect lead to communications

possessing ‘unconditional’ security.

1The superposition of a logical one and zero may be viewed as a coin
spinning in a box, where we cannot claim to show its state being ‘head’
or ‘tail’. When we stop spinning the coin, and lift the lid of the box, the
superposition-based quantum state collapses back into the classical domain as
a consequence of us observing it.
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Fig. 2. Basic quantum communications schematic for transmitting classical information over a secure quantum channel. Preparation: Encoding classical
information into quantum states. Channel: Secure quantum transmission using optical fiber or free space optical. Measurement: Decoding the received
quantum states, yielding classical information.

Quantum communication entails the transfer of quantum

states from one place to another via a quantum channel. In

a generic form, quantum communication consists of three

steps: (i) the preparation of quantum states - where the orig-

inal classical information is encoded into quantum states;

(ii) the transmission of the prepared quantum states over a

quantum channel such as optical fiber or a free-space opti-

cal (FSO) channel - where the states are transmitted from

a transmitter, held by Alice, to a receiver, named Bob; and

(iii) detection - where the received states are decoded using

quantum measurement resulting in some output classical infor-

mation. A schematic including these three steps is shown

in Fig. 2.

A key motivation for quantum communication of Fig. 2

is that the quantum information, mapped for example to

the polarization of a photon, can be shared more securely

than classical information. The well-known example of this

is quantum key distribution (QKD) [3], whose unconditional

security has been theoretically proved (classical cryptogra-

phy schemes are not proved to be secure). We also note the

close connection between quantum communication and quan-

tum entanglement. A pair of quantum states are said to be

entangled if, for example, changing the polarization of a pho-

ton results in an instantaneous polarization change for its

entangled pair. Einstein referred to this as a ‘spooky action

at a distance.’ Important quantum communication protocols

utilizing entangled states include QKD, quantum teleporta-

tion [4]–[6], and entanglement swapping (teleportation of

entanglement) [7].

In terms of representing the quantum states in quantum

communications, discrete-variable (DV) and continuous-

variable (CV) descriptions have been used [8], [9]. In the

former, information is mapped to discrete features such as

the polarization of single photons [3]. The detection of such

features would then be realized by single-photon detectors. In

DV technology information is mapped to two (or to a finite

number of) basis states. The standard unit of DV quantum

information in the two basis form is the quantum bit, also

known as the ‘qubit.’ In a qubit, information is carried as a

superposition of two orthogonal quantum states which can be

represented mathematically as:

|ψ〉 = a1|0〉+ a2|1〉 (1)

with |a1|2 + |a2|2 = 1, where the complex numbers a1
and a2 can be considered as probability amplitudes. The

Fig. 3. Fundamental characteristics of qubits: (a) Superposition &

Measurement: A qubit exists in superposition of the states |0〉 and |1〉.
However, when measured, it collapses to the state |0〉 with a probability of

|a1|2 and the state |1〉 with a probability of |a2|2. Hence, measurement of the
qubit perturbs its coherent superposition. (b) No-cloning Theorem: An arbi-
trary quantum state cannot be cloned. Assume a hypothetical cloning operator
Uc , it is straightforward to show that cloning of a state |ψ〉 is not equivalent
to cloning the constituent basis states, hence a quantum cloning operator Uc
does not exist. (c) Entanglement: Qubits are said to be entangled, if measur-
ing one qubit reveals information on the value of the other. In the example
given, if the first qubit is found to be in the state |0〉 (or |1〉) upon mea-
surement, then the second qubit also exists in the state |0〉 (or |1〉), hence a
mysterious relation exists between the two entangled qubits.

notation |.〉 is used to indicate that the object is a vector.2

Explicitly, the superimposed state of Eq. (1) implies that the

qubit concurrently exists in the states |0〉 and |1〉. However,

it collapses to one of the two states upon measurement.

Fig. 3 summarizes the fundamental attributes of qubits, which

makes quantum communication absolutely secure.

As an alternative approach, CV encoding has also been

introduced [10], [11], and it is this type of encoding

that forms the focus of this work. Such encoding is

2Note we have utilised the standard quantum mechanical notation for a
vector in a vector space, i.e., |ψ〉, where ψ is a label for the vector (any label
is valid). The entire object |ψ〉 is sometimes called a ‘ket’. Note also that 〈ψ|
is called a ‘bra’ which is the Hermitian conjugate or adjoint of the ket |ψ〉.
In quantum mechanics, bra-ket notation is a standard notation for describing
quantum states.



HOSSEINIDEHAJ et al.: SATELLITE-BASED CV QUANTUM COMMUNICATIONS: STATE-OF-THE-ART AND PREDICTIVE OUTLOOK 883

more appropriate for quantum information carriers such

as laser light. In CV technology, information is usu-

ally encoded onto the quadrature variables of the opti-

cal field [10]–[15], which constitute an infinite-dimensional

Hilbert space. Detection of these variables is normally real-

ized by high-efficiency homodyne (or heterodyne) detectors,

which are capable of operating at a faster transmission rate

than single-photon detectors [16]–[18]. The field’s quadrature

components (representing the quantum state) can be consid-

ered as related to the amplitude and phase of the laser light.

Hence, CV states can be generated and detected using off-the-

shelf state-of-the-art optical hardware [10]–[15]. In quantum

mechanics, the quadrature components can also be considered

as corresponding to the position and momentum of a harmonic

oscillator.

There are generally three quantum communication scenar-

ios, namely, the use of optical fibers, the use of terrestrial

FSO channels, and the use of FSO channels to satellites.

These scenarios are complementary and all may be expected

to play a role in the emerging global quantum communication

infrastructure. Fiber technology has the key advantage that

once in place, an unperturbed channel from A to B exists.

In fact, in fiber links the photon transfer is hardly affected

by external conditions such as background light, the weather

or other environmental obstructions. However, fiber suffers

both from optical attenuation and polarization-preservation

problems, which therefore limit its attainable distance to a

few hundred kilometers [19]–[30]. These distance limitations

may be overcome by the development of suitable quantum

repeaters [31]. Losses in fiber are due to inherent random

scattering processes, which increase exponentially with the

fiber length. Explicitly, the transmissivity determining the

fraction of energy received at the output of a fiber link of

length L is given by τ = 10−αfiberL/10, where the value of

αfiber is highly dependent on the wavelength. Losses are min-

imised at the wavelength of 1550 nm, where for silicon fiber

αfiber ≃ 0.2 dB/km.

Replacing the fiber channel with a FSO channel has

the immediate advantage of lower losses [32]–[35], largely

because the atmosphere provides for low absorption. The

atmosphere also provides for almost unperturbed propaga-

tion of the polarization states. Additionally, FSO channels

offer convenient flexibility in terms of infrastructure estab-

lishment, with links to moving objects also feasible [36]–[38].

However, terrestrial FSO quantum communications remain

ultimately distance-limited, due to (amongst other issues)

the curvature of the Earth, potential ground-dwelling line-of-

sight (LoS) blockages, as well as atmospheric attenuation and

turbulence.

FSO quantum communication via satellites [39]–[69] has

the additional advantage that communications can still take

place, even when there is no direct free-space LoS from A to

B. That is, assuming that LoS paths from a satellite to two

ground stations exist, satellite-based FSO communication can

still proceed. The range of satellite-based communication is

also potentially much larger than that allowed by direct ter-

restrial FSO connections, since the former circumvents the

terrestrial horizon limit and there are lower photonic losses

at high altitudes. In satellite-based FSO communications, only

a small fraction of the propagation path (less than 10 km)

is through the atmosphere - meaning most of the propaga-

tion path experiences no absorption and no turbulence-induced

losses. The utilisation of satellites also allows for fundamental

studies on the impact of relativity on quantum communica-

tions [39]. The key disadvantage of satellite-based quantum

communications is, however, atmospheric turbulence-induced

loss. The above discussions are summarized in Fig. 4.

The quantum communication system of Fig. 4 has given

rise to new security paradigms. At the time of writing most of

the classical cryptography schemes are based on the Rivest-

Shamir-Adleman (RSA) protocol [70] in which the encryption

key is public. These cryptography schemes are based on the

concept of one-way functions, i.e., on functions which are easy

to compute but extremely difficult to invert. Hence, the grade

of security of these schemes cannot be irrevocably proved

in principle. In fact, the security of these schemes is not

unconditional, since they are based on certain computational

power assumptions. Thus, if quantum computers were avail-

able today with a substantial amount of parallel computational

power, RSA cryptography schemes could be broken. However,

unconditional security is indeed possible using the so-called

one-time pad scheme of [71], where a symmetric, random

secret key is shared between the transmitter and receiver. To

elaborate, in the one-time pad scheme, the transmitter (Alice)

encodes the message by applying modulo addition between

the plaintext bits and an equal number of random bits of the

shared secret key. At the receiver, Bob decodes the received

message by applying the same modulo addition between the

received ciphertext and the shared secret key. If Alice and Bob

never reuse their key, the one-time pad scheme of [71] cannot

be broken, in principle. However, the main problem of this

scheme is the generation of the secret key - a key which is as

long as the message itself and must be used only once. This

problem becomes severe, when a large amount of informa-

tion has to be securely transmitted. Partially because of this

limitation, public-key cryptography is more widely used than

the one-time pad scheme. However, QKD, which is based on

the laws of quantum physics, allows Alice and Bob to gen-

erate secret keys that can later be used to communicate with

unconditional information-theoretic security, regardless of any

future advances in computational power. Explicitly, the secu-

rity of QKD is based on some of the fundamental principles of

quantum physics. From an attacker’s perspective, the ultimate

goal is to have a perfect copy of the quantum state sent by

Alice to Bob. However, it is impossible to acquire this owing

to the no-cloning theorem mentioned in Fig. 3, which states

that it is impossible to create an identical copy of an arbitrary

unknown quantum state, while keeping the original quantum

state intact [72], [73]. This simple, but crucial, observation can

be traced back to the fact that quantum mechanics is a linear

theory.

Fig. 5 shows the schematic of a QKD system, which can be

divided into two main stages. Firstly, a quantum communica-

tion part where a pair of distant and trusted parties, Alice and

Bob, generate two sets of correlated data through the trans-

mission of a significant number of quantum states over an
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Fig. 4. Insights into the quantum communications system of Fig. 2.

Fig. 5. A schematic of a QKD system: Alice and Bob are connected by a
quantum channel, to which Eve has full access without any limitation (other
than those constrained by the laws of physics). They are also connected by an
authenticated classical channel, which Eve can only monitor. The final shared
key between Alice and Bob, which is unconditionally secure, can then be
used to transmit (encode and decode) secret messages.

insecure quantum channel.3 Secondly, by the use of a classi-

cal post-processing protocol [74], [75] operated over a public

but authenticated (meaning that the transferred data is known

to be unaltered) classical channel, Alice and Bob extract from

their correlated data a secret key that is unknown to a poten-

tial eavesdropper, Eve. The final key, which is unconditionally

secure can then be used to transmit secret messages [76], [77].

Note that in QKD the quantum channel is open to any possible

manipulation by Eve, which means that Eve has full access to

3The term ‘insecure’ here indicates the presence of an eavesdropper.
However, please note that an eavesdropper cannot make a copy of the trans-
mission, since quantum channel is intrinsically protected against copying
owing to the no-cloning theorem. An eavesdropper can only ‘listen to’, or
more specifically ‘measure’, the quantum information.

the quantum channel without any computational (classical or

quantum) limitation other than those imposed by the laws of

quantum physics. However, Eve can only monitor the public

classical channel, without modifying the messages (since the

channel is authenticated).

In line with the quantum communication system of Fig. 4,

there are two main techniques of implementing QKD, namely

DV-QKD and CV-QKD. As the name implies, DV-QKD maps

the key information to a single photon’s phase or polariza-

tion [3], [78], [79], and invokes single-photon detectors. By

contrast, CV-QKD maps the key information to the quadra-

ture variables of the optical field and exploits homodyne (or

heterodyne) detection [10]–[15], which can be implemented

using off-the-shelf optical hardware. Hence, CV-QKD may be

viewed as a specialized application of classic optical commu-

nications. More precisely, CV-QKD is one of the few quantum

applications, which rely on state-of-the-art communications

technology, hence ensuring a relatively smooth transition from

the classical to the ultra-secure quantum regime. Motivated by

this, we set out to survey and characterise the capabilities of

CV quantum technology, in particular the family of satellite-

based quantum communications solutions, which is essential

for realizing our vision of the global quantum communications

system encapsulated in Fig. 1. Since CV entanglement has

been widely relied upon as a basic resource for CV-QKD [80],

our survey is focused on satellite-based CV quantum commu-

nication in the context of CV entanglement distribution and

its application to CV-QKD. A brief comparison of this survey

to other published surveys on topics related to CV quantum

communication is presented in Table I, which are mostly tar-

geted towards the specialized quantum fraternity. By contrast,

we have adopted a slow-paced tutorial approach for bridging
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TABLE I
COMPARISON OF THIS STUDY WITH AVAILABLE SURVEYS

Fig. 6. Paper rationale.

the classical as well as the quantum working groups. For the

readers’ convenience, the rationale of this paper is captured in

Fig. 6, while a detailed paper outline is given in Fig. 7.

II. HISTORICAL OVERVIEW OF THE IMPLEMENTATION OF

QUANTUM KEY DISTRIBUTION SYSTEMS

In this section, we survey the major milestones achieved

in the implementation of free-space QKD systems, which are

chronologically arranged in Table II.

QKD constitutes the most studied quantum communica-

tion protocol, and has been deployed over both fiber and

FSO channels. Indeed, the implementation of QKD over

optical fibers has already been commercialised [90]–[92].

Terrestrial FSO quantum communications have been success-

fully deployed over very long distances [32]–[35]. In 2007,

entanglement-based QKD and decoy-state QKD were realized

over a 144 km FSO link between the Canary Islands of La

Palma and Tenerife [78], [79], [93]. In addition to QKD, long-

distance terrestrial FSO experiments have also been carried

out to implement both entanglement distribution [93], [94] and

quantum teleportation [95], [96]. The above long-distance FSO

quantum communication experiments have been implemented

at night. However, in a recent experiment FSO terrestrial QKD

over 53 km has also been demonstrated during the day by

choosing an appropriate wavelength, spectrum filtering and

spatial filtering [97]. Nonetheless, in both fiber and FSO QKD

implementations, the increasing levels of channel attenuation

and noise tend to limit the maximum distance of successful

key distribution to a few hundred kilometers.

A promising way of extending the deployment range of

QKD is through the use of satellites. Indeed, it is widely antic-

ipated that the reliance on satellites will assist in the expansion

of quantum communication to global scales [39]–[69]. Full-

scale verifications of satellite-based QKD have been reported

in [36] (by demonstration of QKD between an aeroplane and

a ground station), in [37] (by demonstration of QKD using a

moving platform on a turntable, and a floating platform on a

hot-air balloon), and in [38] (by demonstration of QKD from a

stationary transmitter to a moving receiver platform traveling

at an angular speed equivalent to a 600 km altitude satellite).

Furthermore, several satellite-based quantum communication

projects have been reported in [41]–[46]. In [47]–[49], a



886 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

Fig. 7. Paper structure.

satellite-to-ground single-photon downlink was simulated by

reflecting weak laser (coherent) pulses (emitted by the ground-

based station) off a low-Earth-orbit (LEO) satellite. In addi-

tion to experimental demonstrations, quantum communications

with orbiting satellites have also been investigated by a grow-

ing number of feasibility studies [39], [50]–[61]. Recently, the

in-orbit operation of a photon-pair source aboard a nano-

satellite has been reported, which demonstrates photon-pair

generation and polarization correlation under space condi-

tions [64].

Quantum communication via satellites has very recently

been given an enormous boost with the launch of the world’s

first quantum satellite, Micius, by China [66]. Building on the

previously mentioned experiments, this new LEO satellite cre-

ates entangled photon pairs, sending them down to Earth for

subsequent processing in a diverse range of communication

scenarios. For example, using Micius, satellite-based distribu-

tion of entangled photon pairs in the downlink to two terrestrial

locations separated by 1203 km has been demonstrated [67].

Quantum teleportation of single-photon qubits from a ground

station to Micius through an uplink channel has also been

demonstrated [68]. Extensions of this technology to signifi-

cantly smaller satellites has just been reported for a Japanese

micro-satellite and an optical ground station [65].

All of the previous FSO quantum communication

systems referred to above have been focussed on DV

technologies [32]–[69], [78], [79], [93]–[97]. They are based

on single-photon technology and use single-photon detectors.

Such detectors are impaired by background light, and involve

spatial, spectral and/or temporal filtering in order to reduce

this noise [97]. By contrast, in CV quantum communication,

homodyne detection (in which the signal field is mixed with

a strong coherent laser pulse, called the “local oscillator”) is

used for determining the field quadratures of light. Homodyne

detectors offer better immunity to stray light [16], since the

local oscillator is also capable of assisting in both spatial and

spectral filtering. Also, such homodyne detectors are more

efficient than single-photon detectors, since the p-i-n (PIN)

photodiodes used in them offer higher quantum efficiencies

than the avalanche photodiodes of single-photon detectors.

Hence, CV-QKD can generally be considered to be more

robust against background noise than DV-QKD.

In [16] and [98] the feasibility of a point-to-point CV-

QKD (with coherent polarization states of light) has been

demonstrated over a 100 m FSO link. In [99]–[101] the non-

classical properties of CV quantum states propagating through

the turbulent atmosphere have been analysed. Gaussian4 entan-

glement distribution through a single point-to-point atmo-

spheric channel and its applicability to CV-QKD have been

studied in [102]. The entanglement properties of quantum

states in the turbulent atmosphere have also been studied

in [103] and [104]. Satellite-based CV quantum communica-

tion in the context of Gaussian and non-Gaussian entangle-

ment distribution, and its application to CV-QKD, have been

investigated in detail in [105]–[109]. The results presented

in [105]–[109] apply for both a single point-to-point atmo-

spheric channel, and in combined satellite-based atmospheric

channels where the satellite acts as a relay. Recently, a point-

to-point CV quantum communication experiment relying on

the coherent polarization states of light has been established

over a 1.6 km FSO link in an urban environment [110]. The

distribution of polarization squeezed states5 of light through

an urban 1.6 km FSO link has also been demonstrated [111].

Recently, an experiment has been carried out relying on homo-

dyne detection at a ground station of optical signals transmitted

from a geostationary satellite [112]. This experiment is impor-

tant in that it clearly demonstrates the feasibility and potential

of satellite-based CV-QKD implementations.

III. INTRODUCTION TO CV QUANTUM SYSTEMS

Any isolated physical system is associated to a Hilbert

space, i.e., a complex vector space with inner product. The

system is completely described by its state vector, which is a

unit vector in the system’s Hilbert space.

The simplest quantum mechanical system is a qubit, which

has a two-dimensional Hilbert space. Supposing |0〉 and |1〉

4Gaussian quantum states are CV states with field quadratures exhibiting
a Gaussian probability distribution.

5In quantum optics, there is an uncertainty relationship for the quadrature
components of the light field, stating that the product of the uncertainties in
both quadrature components is at least some quantity times Planck’s con-
stant. Hence, the uncertainty relationship dictates some lowest possible noise
(i.e., uncertainty) amplitudes for the quadrature components of the light. In
squeezed light, a further reduction in the noise amplitude of one quadrature
component is carried out by squeezing the uncertainty region of that quadra-
ture component, which is at the expense of an increased noise level in the
other quadrature component.
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TABLE II
MAJOR ACHIEVEMENTS IN THE IMPLEMENTATION OF FREE-SPACE QUANTUM COMMUNICATIONS

form an orthonormal6 basis for this Hilbert space, an arbi-

trary state vector in the Hilbert space can be written as

|ψ〉 = a1|0〉+ a2|1〉, where a1 and a2 are complex numbers.

The normalization condition for state vectors (or the condi-

tion that |ψ〉 be a unit vector), 〈ψ|ψ〉 = 1, is equivalent to

|a1|2 + |a1|2 = 1.7 When we measure a qubit in the basis

{|0〉, |1〉} we obtain either the result |0〉, with probability |a1|2,

or the result |1〉, with probability |a2|2.

Now we can extend a two-dimensional Hilbert state to an

arbitrary-dimensional Hilbert state (even infinite-dimensional).

A quantum state with finite-dimensional Hilbert space is

called discrete-variable quantum state, and a quantum state

with infinite-dimensional Hilbert space is called continuous-

variable quantum state. In an arbitrary-dimensional Hilbert

space the arbitrary quantum state |ψ〉 can be expanded in an

arbitrary orthonormal basis as |ψ〉 =
∑

i ψi |vi 〉, where the

complex number ψi is ψi = 〈vi |ψ〉. By definition the basis is

complete (i.e.,
∑

j |vj 〉〈vj | = I , with I the identity operator)

and orthonormal (i.e., 〈vi |vj 〉 = δij ).

Now let us consider the quantum measurement of an arbi-

trary quantum state |ψ〉. Quantum measurements are described

by operators8 M̂m , where the index m refers to the measure-

ment result. Note that the measurement operators satisfy the

completeness equation
∑

m M̂ †
mM̂m = I . Considering the ini-

tial quantum state |ψ〉, the probability that outcome m occurs

as a result of the quantum measurement M̂m upon the state

|ψ〉 is given by pm = 〈ψ|M̂ †
mM̂m |ψ〉, and the state of the

system after the measurement collapses onto 1√
pm

M̂m |ψ〉.
Due to the completeness of the measurement operators we

have
∑

m pm = 1.

A projective measurement is described by an observable

M̂ . Each observable quantity is associated with a Hermitian

operator whose eigenvalues correspond to the possible values

6A set of vectors |i〉 is orthonormal if each vector is a unit vector, and
distinct vectors are orthogonal, i.e., 〈i |j 〉 = δij , where δij is the Kronecker
delta function.

7Note that the overlap 〈ϕ|ψ〉 indicates the inner product between the
vectors |ψ〉 and 〈ϕ| (the adjoint of the vector |ϕ〉) in the Hilbert space.

8The operator serves as a linear function which acts on the states of
the system. While quantum states correspond to vectors in a Hilbert space,
operators can be regarded as matrices.

of the observable. The observable has a spectral decompo-

sition M̂ =
∑

m λm P̂m , where P̂m = |um 〉〈um |. The

vectors |um 〉 are the orthonormal set of eigenvectors of the

observable M̂ with real-valued eigenvalues λm which satisfy
∑

m |um 〉〈um | = I . The probability for obtaining the mea-

surement result λm upon measuring the state |ψ〉 is given by

pm = |〈um |ψ〉|2. Hence, the probability pm is determined by

the size of the component of |ψ〉 in direction of the eigenvec-

tor |um 〉. When the measurement result λm is obtained, the

quantum state |ψ〉 collapses onto 1√
pm

P̂m |ψ〉.
One form of a CV quantum system is that represented by

N bosonic modes, such as those corresponding to N quan-

tized radiation modes of the electromagnetic field [9], [83],

[85]–[87], [113], [114]. A single photon has four degrees of

freedom, helicity (polarization) and the three components of

the momentum vector. In principle, quantum information can

be encoded into any one of these degrees of freedom. A sin-

gle ‘mode’ of an electromagnetic field refers to a specific

combination of these photonic degrees of freedom. In many

circumstances different modes can be simply represented by

different frequencies (since frequency is related to momen-

tum). For a beam of photons, the number of photons in the

beam constitutes another means to encode quantum informa-

tion. Quantum information encoded into the quadratures of

the electromagnetic field (formally defined below) are related

to an encoding in this additional degree of freedom. Since the

quadrature operators have continuous spectra, we can describe

the values of such operators as CV variables.

A single mode of a CV system can be described as a single

quantum harmonic oscillator of a specific frequency, where

the electric and magnetic fields play the ‘roles’ of the position

and momentum [115]. It will be useful to further illustrate

this concept. Consider the case of a single-frequency radia-

tion field confined to a one-dimensional cavity with walls that

are perfectly conducting. Assume the z-axis is parallel to the

length of the cavity and the cavity walls are located at z =
0 and z = L. The electric field within the cavity will form

a standing wave. Without loss of generality, we can take the

electric field to be polarized perpendicular to the z-axis, and

in the positive x-direction (we take the x and z coordinates to
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be in same plane and the y plane perpendicular to the x plane).

In terms of the distance vector r and time t, the electric field

can then be written as E (r , t) = exEx (z , t), where ex is a

unit-length polarization vector. Given our boundary conditions,

and assuming a radiation source-free cavity, the electric field

satisfying Maxwell’s equations can be written as [115]

Ex (z , t) =

√

(

2ω2

Voε0

)

q(t) sin(kz ), (2)

where k = ω/c is the wave number (ω is the frequency of

the mode and c is the speed of light in vacuum), ε0 is the

vacuum permittivity, q(t) is a time-dependent factor having the

dimension of length (meters), and Vo is the effective volume

of the cavity.9 For the present purposes we will assume the

frequency is one of those allowed by the boundary conditions,

namely, ωn = c(nπ/L), where n = 1, 2, . . ..
Similarly, the magnetic field can be written B(r , t) =

eyBy (z , t), where ey is a unit-length polarization vector,

and [115]

By (z , t) =
µ0ε0
k

√

(

2ω2

Voε0

)

p(t) cos(kz ). (3)

Here p(t) = q̇(t), where the dot denotes the time derivative,

and µ0 is the vacuum permeability. Based on these equations

it is then straightforward to show that the Hamiltonian, Ho ,

of the electromagnetic field can be written as [115]

Ho =
1

2

∫

dVo

(

ε0E
2
x (z , t) +

1

µ0
B2
y (z , t)

)

. (4)

Substituting Ex (z , t) and By (z , t) in Ho from Eq. (2)

and Eq. (3) respectively and exploiting that sin2(ωc z ) +
cos2(ωc z ) = 1 the Hamiltonian of the single-mode electro-

magnetic field can be written as

Ho =
1

2

(

p2 + (ωq)2
)

. (5)

This equation can be compared with the Hamiltonian of the

classical harmonic oscillator for a particle of mass m viz.,

Ho = 1
2 (p

2/m + (mωq)2), where we have taken the gen-

eralised coordinate q = x and set p = mẋ , x being the

position. Comparing these two Hamiltonians, it can be seen

that a single-mode electromagnetic field is formally equivalent

to a harmonic oscillator of unity mass, where the electric and

magnetic fields play roles similar to that of the position and

momentum of a particle.10

In quantum systems we replace variables, such as q, p,

E, B and H of the classical system, by their corresponding

operator11 equivalents, e.g., q̂ , p̂, Ê , B̂ and Ĥ . Then the

Hamiltonian of the single-mode electromagnetic field becomes

Ĥo = 1
2 (p̂

2 + (ωq̂)2). As such, we can now see how a single

mode of a CV system can indeed be described as a single

quantum harmonic oscillator. Furthermore, note that the oper-

ators q̂ and p̂ are Hermitian (or self-adjoint). In quantum

9To apply this formalism to the free field we calculate the physical
observables we are interested in and then simply take the limit V0 → ∞.

10We emphasize that the terms ‘position’ and ‘momentum’ here simply
refer to the similar roles played by the field quadratures and position and
momentum of a particle - e.g., the ‘position quadrature’ does not in any
manner refer to the position of a photon.

11Note that operators can be regarded as matrices. In fact, the operator and
matrix viewpoints turn out to be completely equivalent [8].

physics Hermitian operators correspond to observable quan-

tities, where an observable is an operator that corresponds to

a physical quantity, such as position or momentum, that can

be measured.

However, it will be useful to introduce non-Hermitian

operators â (the annihilation operator) and â† (the creation

operator). These can be written as,

â = (2�ω)(−1/2)(ωq̂ + i p̂), (6)

â† = (2�ω)(−1/2)(ωq̂ − i p̂), (7)

where � = h/2π, with h being Planck’s constant. These

bosonic field operators satisfy the commutation relation

[â, â†] = 1, where the commutator between two operators

x̂ and ŷ is defined to be [x̂ , ŷ ] = x̂ ŷ − ŷ x̂ . Note that since

the annihilation and creation operators are non-Hermitian, they

correspond to non-observable quantities.

It can be easily shown that our new non-Hermitian operators

have a time dependence, under free evolution, which can be

expressed as â = â(0) exp(−iωt) and â† = â†(0) exp(iωt).
As such, the electric field operator can then be re-written as

Êx (z , t)

=

√

(

�ω

V0ε0

)

sin(kz )
[

â exp(−iωt) + â† exp(iωt)
]

. (8)

Removing the time dependence in the creation and annihilation

operators by re-setting â = â(0) and â† = â†(0), we can in

turn define the quadrature operators (see later discussion on

the freedom to choose the specific form of these)

X̂1 =
1

2

(

â + â†
)

, (9)

X̂2 =
1

2i

(

â − â†
)

. (10)

In terms of the quadrature operators we can then re-write

Êx (z , t) as

Êx (z , t) = 2

√

(

�ω

V0ε0

)

sin(kz )
[

X̂1 cos(ωt) + X̂2 sin(ωt)
]

.

(11)

As such, we can see that the quadratures X̂1 and X̂2 can

be considered as the amplitudes of the electric field’s time-

dependent cos and sin components, respectively. Clearly, these

components are 90◦ out of phase with each other - hence the

name, quadratures. The quadratures satisfy the commutation

relation [X̂1, X̂2] = i/2.12

A CV system of N modes follows a similar description to

that we have just given for a single mode, except of course

the Hilbert space containing the multimode system is larger.

The N-mode system may be described by a Hilbert space

given by the tensor product H = ⊗N
k=1Hk , where Hk is a

single-mode Hilbert space associated with the k-th mode. The

12This can be derived from the constraint imposed by quantum mechanics
that [q̂ , p̂] = i�. Note, that in contrast to classical physics where any two
observables commute, i.e., their commutator is zero (which means it is pos-
sible to know precisely the value of both observables at the same time), in
quantum mechanics the quadrature observables of the electromagnetic field
do not commute.
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creation and annihilation operators for each mode then satisfy

the commutation relationships

[âk , âk ′ ] =
[

â†
k
, â†

k ′

]

= 0,
[

âk , â
†
k ′

]

= δkk ′ , (12)

where δkk ′ is the Kronecker delta function.

Consider again the single-mode Hilbert space Hk . This is

spanned by the Fock, or number-state basis, {|n〉k}∞n=0, where

the Fock state |n〉k is the eigenstate of the number operator

n̂k = â†
k
âk , i.e., n̂k |n〉k = n|n〉k . Put simply, |n〉k represents

the state of the electromagnetic field containing exactly n pho-

tons (quanta) of frequency ωk . Note that for each mode k there

exists a vacuum state which contains no quanta of the field,

namely, |0〉k , satisfying âk |0〉k = 0. The action of the bosonic

field operators over the Fock states is given by [9], [87]

âk |n〉k =
√
n|n − 1〉k , â†

k
|n〉k =

√
n + 1|n + 1〉k . (13)

Having now formally defined the vacuum state, it is prob-

ably useful to note for the unwary that some apparent

inconsistency lies lurking in the literature (including the many

references of this work). This applies to both the constant

value applied to �, as well as the nomenclature itself. We note

that our quadrature operators, as defined thus far, can be used

to form q̂ =
√

2�/ωX̂1 and p̂ =
√
2�ωX̂2; from which we

can easily show consistency with [q̂ , p̂] = i�. In many works

we will find that q̂ and p̂ written in this form (and also in

‘dimensionless’ form with, say, � = ω = 1) are also referred

to as the ‘quadratures.’ Also, in many works the cofactor of

1/2 in front of our definitions of X̂1 and X̂2 is replaced by

some other constant, e.g., 1/
√
2 or 1-allowable re-definitions

of course. It is straightforward to determine the vacuum expec-

tation value for any well-defined operator (or function of that

operator), e.g., 〈0|X̂ 2
1 |0〉 = 1/4, and 〈0|q̂2|0〉 = �/(2ω). It

is common to set � to some numerical constant, usually 1/2,

1 or 2. However, no consistency exists in the literature on

this either. Setting � = 2 has the convenience of setting the

vacuum-state variance of the q̂ and p̂ operators to 1 (when ω
is set to unity).13

Bearing in mind the above discussion of inconsistency in

nomenclature, we adopt henceforth that � = 2 and ω = 1

(unless stipulated otherwise). We also redefine the ‘quadrature’

operators to be q̂k and p̂k , now given by the simpler form

q̂k = âk + â†
k

and p̂k = i(â†
k
− âk ). This will make the

notation to follow less cluttered.

Defining the vector of quadrature operators for N modes

as R̂ = (q̂1, p̂1, . . . , q̂N , p̂N ), the commutation relationship

between the quadrature operators can be written as [R̂i , R̂j ] =

2iΩij , where R̂i (R̂j ) is the i-th (j-th) element of the vector

R̂, and Ωij is the element of the matrix

Ω =
N
⊕
k=1

Ω0 , Ω0 =

(

0 1
−1 0

)

. (14)

Since a Hermitian operator has an orthogonal set of eigen-

vectors with real-valued eigenvalues, the quadrature operator

q̂ (p̂) (which is Hermitian) is an observable with continuous

13Note the variance of q̂ in the vacuum state is just 〈0|q̂2|0〉 since the

vacuum expectation of q̂ is zero (variance = 〈0|q̂2|0〉 − 〈0|q̂ |0〉2). Similar
is the case for p̂.

eigenspectra, i.e., q̂ |q〉 = q |q〉 (p̂|p〉 = p|p〉), with orthogonal

eigenvectors or eigenstates |q〉 (|p〉) having continuous eigen-

values q∈ R (p∈ R). Note that the two sets of eigenstates |q〉
and |p〉 identify two different bases (i.e., two different sets of

orthogonal and complete eigenstates), and each set constitutes

a common basis for CV quantum information. A CV quantum

state can be defined as a continuous-valued superposition of

the field’s eigenstates.

All the physical information about a quantum system is con-

tained in its quantum state, represented by a density operator

ρ̂, which is a trace-one positive operator. A pure quantum state

(i.e., the state of an isolated physical system which does not

have any interaction with the environment) is described by a

unit vector |ψ〉 in Hilbert space, and its density operator is

given by ρ̂ = |ψ〉〈ψ|.
Unlike pure states, mixed states cannot be described by

a single vector in the Hilbert space, because the knowledge

about the state preparation is incomplete. In fact, a mixed state

is a statistical mixture of pure states, and is described by its

associated density operator. The density operator describing

a mixed state is in the form of ρ̂ =
∑

i pi |ψi 〉〈ψi |, where

the pure quantum state |ψi 〉 in which the system is prepared

occurs with probability pi . A quantum state ρ̂ is said to be a

pure state, when we have ρ̂2 = ρ̂. In fact, for pure states we

have Tr(ρ̂2) = 1, and for mixed states we have Tr(ρ̂2) < 1,

where Tr denotes trace.

For a general mixed quantum state ρ̂ =
∑

i pi |ψi 〉〈ψi |
the mean value of the observable M̂ is given by 〈M̂ 〉 =
∑

i pi 〈ψi |M̂ |ψi 〉 = Tr(ρ̂M̂ ), where 〈.〉 denotes the mean

value, and the variance of the observable M̂ is given by

V (M̂ ) = 〈M̂ 2〉 − 〈M̂ 〉2, where V(.) is the variance. Note

that the fluctuations in the quadrature operators (i.e., q̂ and

p̂) of the electromagnetic field can be characterized by the

variance of these observables, or by the standard deviation
(i.e., the square root of the variance) of these observables

denoted by ∆(.), which is sometimes referred to as the

uncertainty of the quadrature operators. Note also that for

non-commuting operators Â and B̂ where [Â, B̂ ] = Ĉ , we

have ∆(Â)∆(B̂) ≥ 1
2 |〈Ĉ 〉|. Since the quadrature operators

of the electromagnetic field do not commute ([q̂ , p̂] = i�),

there exists an uncertainty relation for the uncertainty of the

quadrature operators, called the Heisenberg uncertainty prin-

ciple. In a N-mode CV system the Heisenberg uncertainty

principle is defined for the quadrature operators of each mode

k, and is given by V (q̂k )V (p̂k ) ≥ 1 (recall again � = 2).

According to the uncertainty principle if we prepare a large

number of quantum systems in identical states, and then mea-

sure the quadrature q̂ of some of those states, and measure

the quadrature p̂ of others, then the variance of the q̂ results

times the variance of the p̂ is at least one. Note again, that

the quadrature variance of the vacuum state of a single mode

is one, i.e., we have V (q̂) = V (p̂) = 1, which is the low-

est possible variance reachable symmetrically by the q̂ and p̂

quadratures according to the uncertainty relationship.

A quantum state ρ̂ of a N-mode CV system can also

be described in terms of a characteristic function χc(ξ) =
Tr(ρ̂D̂(ξ)), where D̂(ξ) = exp(i R̂Ωξ) is the Weyl operator

[9], [87], and ξ ∈ R
2N . The quantum state ρ̂ can also be
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described in terms of a Wigner function (quasi-probability

distribution), which is given by the Fourier transform of the

characteristic function χc as [9], [87]

W (R) =

∫

R2N

d2N ξ

(2π)2N
exp(−iRΩξ)χc(ξ), (15)

where R = (q1, p1, . . . , qN , pN ) is the vector of quadra-

ture variables, with the real-valued variables q and p being

the eigenvalues of the quadrature operators. Note that for a

single-mode quantum state the probability distribution of a

quadrature measurement (marginal distribution) is obtained

from the Wigner function of the quantum state by integration

over the conjugate quadrature.

The CV quantum states can be visualized using their Wigner

function in a phase-space representation, where the axes are

defined by a pair of conjugate quadrature variables q and p.

In such a phase space, a classical optical field is represented

by a single point corresponding to its complex-valued field

amplitude. However, the quantum states of light cannot be rep-

resented by a single point, since conjugate quadrature variables

cannot be measured simultaneously with arbitrary precision

due to the Heisenberg uncertainty relationship. Hence the

Wigner function is utilized to represent the quantum states

in the phase space [9], [85]–[87].

A. Gaussian Quantum States

Gaussian quantum states (for a detailed review, see [86],

[87], [114]) are completely characterized by the first moment

(or the mean value) of the quadrature operators 〈R̂〉 and a

covariance matrix M , i.e., a matrix of the second moments of

the quadrature operators defined as

Mij =
1

2
〈R̂i R̂j + R̂j R̂i 〉 − 〈R̂i 〉〈R̂j 〉. (16)

The covariance matrix of a N-mode quantum state is a

(2N × 2N) real symmetric matrix, which must satisfy the

uncertainty principle, viz., M + iΩ ≥ 0. By definition, a

Gaussian state having N modes is a CV state whose Wigner

function is a Gaussian distribution of the quadrature variables

given by

W (R) =
exp

(

−1
2 (R − 〈R〉)M−1 (R − 〈R〉)T

)

(2π)N
√

det(M )
. (17)

Some important examples of Gaussian states are vacuum

states [9], [86], [87], [115], coherent states [9], [86], [87],

[115], thermal states [9], [86], [87], [115] and squeezed

states [9], [86], [87], [115]. We discuss some of these Gaussian

states further.

1) Vacuum State: The Wigner function of the vacuum state

with respect to the conjugate quadrature variables q and p

is shown in Fig. 8(a), in which the Wigner function is cen-

tered at (0, 0), which means that the vacuum state has a zero

mean. The covariance matrix of the vacuum state is the iden-

tity matrix, which means that a vacuum state has a symmetric

distribution of the quadrature components (see Fig. 8(a)) with

both the quadrature components having noise variance of one.

This noise is usually termed the vacuum noise or quantum

shot noise.

2) Coherent State: A coherent state is generated by apply-

ing the displacement operator D̂ to the vacuum state formu-

lated as |α〉 = D̂(α)|0〉, where D̂(α) = exp(αâ† − α∗â) is

the displacement operator and α = (q + ip)/2 is the complex

amplitude. Since the displacement operator does not change

the variance of the quadratures, coherent states - similarly to

vacuum states - exhibit the lowest possible variance reach-

able symmetrically by the q̂ and p̂ quadratures. The coherent

state is the eigenstate of the annihilation operator, which is

formulated as â|α〉 = α|α〉. To elaborate a little further, this

state has a mean value of 〈R̂〉 = (q , p), and the covariance

matrix is equal to the identity matrix, which means that a

coherent state has a symmetric distribution of the quadrature

components with both the quadrature components having noise

variance equal to one. This symmetric distribution can be seen

in Fig. 8(b), where the Wigner function of the coherent state

with a mean value of (3, 5) (which is the centre of the Wigner

function) is shown with respect to the conjugate quadrature

variables q and p. Note that coherent states are much easier to

generate in the laboratory than any other Gaussian state. For

example, the laser field is in a coherent state. As an impor-

tant application in the context of quantum communication,

coherent states are used to distribute secret keys in Gaussian

CV-QKD protocols [13], [14], [116], [117].

3) Thermal State: Thermal states can be described as a

mixture of coherent states. The thermal state has a zero

mean and a covariance matrix Mth = vtI associated with

vt = 2n̄ + 1, where vt is the noise variance of each quadra-

ture component, n̄ >0 is the average number of photons and

I is the (2 × 2)-element identity matrix. This form of the

covariance matrix means that a thermal state has a symmetric

distribution of the quadrature components, which can be seen

in Fig. 8(c) where the Wigner function of the thermal state

with vt = 5 is shown with respect to the conjugate quadrature

variables q and p. Note that in the generic form of quan-

tum communication the quantum noise of the channel is in a

thermal state, called thermal noise.

4) Single-Mode Squeezed Vacuum State: According to the

Heisenberg uncertainty relationship, the lowest possible vari-

ance reachable symmetrically by the q̂ and p̂ quadratures is

one, i.e., the noise variance of the vacuum state. A reduc-

tion in the variance of the q̂ (or p̂) quadrature below the

vacuum noise is possible by squeezing. In squeezing, the vari-

ance of one continuous variable is in fact decreased below the

vacuum noise, while the variance of the conjugate variable

is increased. For instance, in a q̂-squeezed light, the vari-

ance of the q̂ quadrature is reduced below the vacuum noise,

while the variance of the p̂ quadrature is increased above

the vacuum noise. A single-mode squeezed vacuum state is

generated by applying the single-mode squeezing operator of

Ŝs(rs) = exp [rs(â
2 − â†2)/2] [9], [86], [87], [115] to the

vacuum state, where rs ∈ [0,∞) represents the single-mode

squeezing parameter.14 Such a squeezed state has zero mean

and a covariance matrix of M = diag [ exp(−2rs), exp(2rs)]

14Note, in general, squeezing parameters are complex numbers. For sim-
plicity (and to be consistent with most of the literature) we limit them here
to real numbers.
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when the quantum fluctuations of the q̂ quadrature have been

squeezed. In this case for the single-mode squeezing repre-

sented by rs >0 we have V (q̂) < 1 and V (p̂) >1. This means

that a single-mode squeezed state does not have a symmetric

distribution of the quadrature components, since the variance

of one of the quadratures is reduced by squeezing at the

expense of an increase in the variance of the conjugate quadra-

ture by the counterpart operation of anti-squeezing. Note, the

state still obeys the Heisenberg uncertainty relationship. Such

an asymmetric distribution of quadrature components can be

seen in Fig. 8(d), where the Wigner function of the single-

mode squeezed vacuum state with rs = 0.5 is shown. Here,

the q̂ quadrature is squeezed. In terms of applications in quan-

tum communications, single-mode squeezed vacuum states are

also utilized to distribute secret keys in Gaussian CV-QKD

protocols [12], [118]. Note that for rs = 0, the single-mode

squeezed state corresponds to the vacuum state.

5) Two-Mode Squeezed Vacuum State: A two-mode

squeezed vacuum (TMSV) state is generated by apply-

ing the two-mode squeezing operator of Ŝt (r) =
exp [r(â1â2 − â†

1 â
†
2)/2] [9], [86], [87], [115] to a pair of

vacuum states |0〉|0〉, where r ∈ R is the two-mode

squeezing parameter, and the indices 1 and 2 represent the

two modes. A TMSV state is described in the Fock basis

as [9], [86], [87], [115]

|TMSV〉 =
∞
∑

n=0

qn |n〉1|n〉2, where

qn =
√

1− λ2λn , (18)

and λ = tanh(r). The two-mode squeezing in dB is

given by −10log10[exp(−2r)]. Such a squeezed state has

a zero mean, and a covariance matrix in the following

form [9], [86], [87], [115]

M =

(

v I
√
v2 − 1Z√

v2 − 1Z v I

)

, (19)

where v = cosh (2r) is the quadrature variance of each

mode, and Z = diag(1, −1). Note that the two-mode squeez-

ing operator Ŝt cannot be factorised into the product of the

two single-mode squeezing operators Ŝs . Hence, the TMSV

state is not a product of the two single-mode squeezed vac-

uum states. In fact, the squeezing (anti-squeezing) operation

applied to the quantum fluctuations does not squeeze (anti-

squeeze) the variance of the individual modes, but rather

that of the superposition of the two modes, so that we have

V (q̂−) = V (p̂+) = exp(−2r) and V (q̂+) = V (p̂−) =
exp(2r), where q̂− = (q̂1 − q̂2)/

√
2, p̂+ = (p̂1 + p̂2)/

√
2,

q̂+ = (q̂1+ q̂2)/
√
2, and p̂− = (p̂1− p̂2)/

√
2. For a two-mode

squeezing operation with r>0, we have V (q̂−) = V (p̂+) < 1
and V (q̂+) = V (p̂−) > 1. The correlations between the

quadratures of the two modes are known as Einstein-Podolski-

Rosen (EPR) correlations, which indicate the presence of

bipartite entanglement. Hence, for the two-mode squeezing

operation with r>0 the two modes are entangled, where the

entanglement increases upon increasing r. The TMSV state

associated with r>0 is the most commonly used Gaussian

entangled state [9], [83], [86], [87], [113], [114]. In the limit

Fig. 8. The Wigner function of the important single-mode Gaussian states
including vacuum state, coherent state with a mean value of (3, 5), thermal
state with vt = 5, and single-mode squeezed vacuum state with rs = 0.5
and with q̂ quadrature being squeezed.

of r → ∞ we have a maximally entangled state having per-

fect correlations, yielding q̂1 = q̂2 and p̂1 = −p̂2. Note that

for r = 0 the TMSV state corresponds to two (non-entangled)

vacuum states.

The Gaussian entangled squeezed states can be generated

by parametric down conversion in a non-degenerate optical

parametric amplifier [119]–[123], where a crystal having an

optical nonlinearity is pumped by a bright laser beam. A pho-

ton of the incoming pumping beam spontaneously transfigures

in the non-linear crystal into a lower-energy pair of photons,

termed as the signal and the idler [119]–[123]. In Type-II

parametric down conversion, which is known as a source

of entangled states in the CV domain, the signal and idler

are in orthogonal polarizations, forming a Gaussian entangled

squeezed state [119]–[123]. In this process, the pump photons

of frequency 2ωp are converted into pairs of entangled photons

having a pair of different-frequency modes, namely modes 1

and 2 of frequency ω1 and ω2, where 2ωp = ω1 + ω2. An

alternative way of generating the Gaussian entangled squeezed

state is by mixing two orthogonally single-mode squeezed

vacuum states, where one of the states is squeezed in the q̂
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quadrature and the other one is squeezed in the p̂ quadra-

ture. This mixing can be achieved by a balanced (or 50:50)

beam splitter. Note that the single-mode squeezed vacuum

state can be generated by Type-I parametric down conversion

in a degenerate optical parametric amplifier, where the pump

photons of frequency 2ωp are split into pairs of photons having

the same frequency and polarization [123].

Finally, note that by invoking local unitary operators the

first moment of every two-mode Gaussian state can be set to

zero and the covariance matrix can be transformed into the

following standard form [86], [87], [114]

Ms =

(

A C

C
T

B

)

, (20)

where we have A = aI, B = bI, C = diag(c+, c−),
a, b, c+, c− ∈ R.

B. Homodyne Detection

The homodyne detection of Fig. 9(a) represents the most

common measurement in CV quantum information process-

ing [9], [86], [87]. This detection scheme can be used for

determining or observing the quadrature operator q̂ (or p̂) of a

mode. The scheme of Fig. 9(a) is experimentally implemented

by combining the target mode (relying on the annihilation

operator â) with a local oscillator via a balanced beam split-

ter. The local oscillator is assumed to be in a bright coherent

state |αLO 〉. Since |αLO 〉 is represented by a large number

of photons, the local oscillator can be described by a classical

complex amplitude αLO . The two output modes of the beam

splitter can then be approximated by â1 = (αLO+ â)/
√
2 and

â2 = (αLO − â)/
√
2.

The intensity of each outgoing mode is then measured using

a photodetector, which converts the photons of the electromag-

netic mode into electrons, and hence into an electric current -

which is termed as the photo-current î . The photo-current is

proportional to the number of photons in the electromagnetic

mode. Hence, the pair of photodetectors of the two output

modes of the beam splitter generate the photo-currents of

î1 ∝ n̂1 = â†
1 â1 =

(

α∗
LO + â†

)

(αLO + â)/2,

î2 ∝ n̂2 = â†
2 â2 =

(

α∗
LO − â†

)

(αLO − â)/2. (21)

Then the difference between the photo-currents î1 and î2 is

measured, or more specifically, î1 − î2 ∝ (α∗
LO â + αLO â†)

is measured. Considering a local oscillator associated with

αLO = |αLO | exp(iΘ), where |αLO | and Θ are the magnitude

and phase of the local oscillator respectively, the quadrature

operator q̂ (p̂) can be measured by setting the local oscillator’s

phase as Θ = 0 (Θ = π/2).

In contrast to homodyne detection, heterodyne detection

allows us to measure both the quadrature operators q̂ and p̂

of a mode simultaneously [9], [86], [87]. A heterodyne detec-

tor combines the target mode with a vacuum ancillary mode

into a balanced beam splitter. Then, homodyne detection is

applied to the conjugate quadratures of the two output modes,

i.e., to q̂ of one output mode and p̂ of the other one, which

are measured using homodyne detection. The ‘price’ to pay

Fig. 9. (a) Homodyne detection: The signal mode is combined with the
local oscillator in a balanced beam splitter. Each output mode of the beam
splitter is then measured using a photodetector, which generates a photo-
current proportional to the photon numbers of the output mode. By measuring
the difference between the two photo-currents, the q̂ (or p̂) quadrature operator
of the signal mode can be measured depending on the phase of the local
oscillator. (b) Heterodyne detection: The signal mode interacts with a vacuum
mode in a balanced beam splitter. By applying homodyne detection to the
conjugate quadratures of the two output modes, both the quadrature operators
of the signal mode can be measured simultaneously at the price of introducing
an additional noise term into the measurements.

for this simultaneous detection is the introduction of an addi-

tional noise term into the measurements (due to the mixing

into the signal of the vacuum state). The implementation of

heterodyne detection is shown in Fig. 9(b).

C. CV Entanglement

We have already discussed the notion of entanglement.

Indeed, this property is one of the most important proper-

ties of quantum mechanics, and is widely recognized as a

basic resource for quantum information processing and quan-

tum communications (for review, see [83], [87], [113], [114]).

We now attempt to quantify the entanglement property of CV

states more carefully. We focus our attention on bipartite CV

entanglement, which relies on the entanglement between two

CV quantum systems. Let us consider the pair of CV quantum

systems A and B having Hilbert spaces HA and HB , respec-

tively. The Hilbert space of the composite system is given

by the tensor product HA ⊗ HB . By definition, a bipartite

quantum state ρ̂AB relying on the Hilbert space HA ⊗ HB

is said to be separable, if it can be formulated as a probabil-

ity distribution over a pair of uncorrelated states expressed as

ρ̂AB =
∑

i pi ρ̂
A
i ⊗ ρ̂Bi , where the quantum state ρ̂Ai (ρ̂Bi ) acts

on the Hilbert space HA (HB ), pi ≥ 0, and
∑

i pi = 1. If a

quantum state ρ̂AB is separable, then its partial transpose ρ̂PTAB
with respect to either subsystem is positive [124]. The partial
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transposition of ρ̂AB represents the transposition with respect

to only one of the two subsystems, for example to system B.

By definition, a state is stated to be entangled, when it is not

separable in the above-mentioned sense.

The grade (or quantifiable measure) of entanglement in

a pure bipartite quantum state |ψ〉 (with density operator

ρ̂AB = |ψ〉〈ψ|) can be quantified by the entropy of entan-

glement Ev (|ψ〉). The entropy of entanglement stipulates the

number of entangled qubits (measured in ebits)15 that can

be extracted from the state. It also can be considered as

the amount of entanglement required to generate the state.

The entropy of entanglement is given by the von Neumann

entropy of the reduced density operators ρ̂A or ρ̂B , where

ρ̂A = TrB (ρ̂AB ) and ρ̂B = TrA(ρ̂AB ), with TrA and TrB
denoting the partial trace [83], [87], [113], [114].

For a Gaussian state ρ̂, the von Neumann entropy S (ρ̂)
is given by S (ρ̂) =

∑

k g(νk ), where we have g(x ) =
[(x + 1)/2]log2[(x + 1)/2]− [(x − 1)/2]log2[(x − 1)/2], and

νk are the symplectic eigenvalues16 of the covariance matrix

of the state. For a pure two-mode entangled state in the form

of |ψ〉 =
∑∞

n=0 qn |n〉1|n〉2, the entropy of entanglement is

given by Ev (|ψ〉) = −∑∞
n=0 q

2
n log2q

2
n .

Among the different quantifiable measures used as a grade

of entanglement for a mixed bipartite quantum state ρ̂AB =
∑

i pi |ψi 〉〈ψi |, the most well-known is perhaps the entan-

glement of formation [125], [126], Ef . This is defined as

Ef (ρ̂AB ) = min
{pi ,|ψi 〉}

∑

i piEv (|ψi 〉), where the minimum is

taken over all the possible pure-state decompositions of the

mixed state ρ̂AB . The entanglement of formation gives the

minimal amount of entanglement of any ensemble of pure

states realizing the given state ρ̂AB - meaning it quantifies

the minimum amount of entanglement needed to prepare the

quantum state ρ̂AB from a mix of pure entangled states. In

fact, given an entangled state ρ̂AB , the entanglement of forma-

tion expresses the number of maximally entangled states we

need to create ρ̂AB . In general, this measure of entanglement

is difficult to calculate.

The distillable entanglement is another measure for entan-

glement, and is the amount of entanglement that can be

distilled from a given mixed state [113]. This quantity is also

hard to calculate in general, since it would require optimization

over all possible distillation protocols. However, there is an

entanglement measure which is easy to compute, and gives an

upper bound on the amount of distillable entanglement. This

measure is the so-called logarithmic negativity [127], [128].

15An ebit (entanglement qubit) as the unit of bipartite entanglement is the
amount of entanglement that is contained in a maximally entangled two-qubit
state (Bell state). In fact, it is said that each of the Bell states contains one
ebit of entanglement.

16For an arbitrary N-mode covariance matrix M , there exists a sym-

plectic matrix S such that M = SMdS
T , where Md =

N
⊕

k=1
νk I

is a diagonal matrix, and the N positive quantities νk are the symplectic
eigenvalues of M . Note that a symplectic matrix S is a matrix with real

elements that satisfies the condition SΩS
T = Ω where Ω is defined in

Eq. (14) [87], [114]. For example, given a two-mode Gaussian state associ-

ated with a covariance matrix M = {A,C ;CT ,B}, where A = A
T ,

B = B
T , and C are 2 × 2 real matrices, the symplectic eigenval-

ues of M are given by ν2
±

= (∆±
√

∆2 − 4 det(M ))/2, where ∆ =
det(A) + det(B) + 2 det(C ) [87], [114].

The logarithmic negativity (LN) exhibits the following prop-

erties. (i) ELN is a non-negative function, ELN (ρ̂AB ) ≥ 0.

(ii) If ρ̂AB is separable, ELN (ρ̂AB ) = 0. (iii) ELN (ρ̂AB )
does not increase on average under local (quantum) operations

and classical communications. The logarithmic negativity of a

bipartite state ρ̂AB is defined as [127]

ELN (ρ̂AB ) = log2[1 + 2N (ρ̂AB )], (22)

where N (ρ̂AB ) is the negativity defined as the absolute value

of the sum of the negative eigenvalues of ρ̂PTAB . The logarithmic

negativity quantifies as to what degree the quantum state fails

to satisfy the positivity of the partial transpose condition.

In the special case of two-mode Gaussian states, we are

able to determine the logarithmic negativity through the use

of the covariance matrix [83], [87], [114]. Given a two-

mode Gaussian state associated with a covariance matrix

M = {A,C ;CT ,B} where A = A
T , B = B

T , and C

are 2 × 2 real matrices, the logarithmic negativity is given

by [83], [87], [114]

E
LN

(M ) = max[0,−log2(ν̃−)], (23)

where ν̃− is the smallest symplectic eigenvalue of

the partially transposed M . This eigenvalue is given

by [83], [87], [114]

ν̃2− =

(

∆−
√

∆2 − 4 det(M )

)

/2, (24)

where ∆ = det (A) + det (B) − 2det (C).

D. Gaussian Lossy Quantum Channel

Consider a fixed-attenuation channel described by a trans-

missivity of 0 ≤ τ ≤ 1 and thermal noise variance of Vn ≥ 1.

Note that in the optical frequency domain the average number

of photons is very low even at room temperature (300K), hence

the thermal noise has a negligible impact on the signal. In fact,

in the optical frequency domain the noise variance is effec-

tively unity, simply representing the vacuum noise. However,

in the millimeter-wave domain the thermal noise exhibits a

variance, Vn , which is much higher than unity. More specifi-

cally, we have Vn = 2n̄+1 with n̄ being the average number

of photons [129]–[132]. In order to suppress the thermal noise,

the system has to be operated at very low temperatures, e.g.,

<100mK. The average number of photons for a single mode

is given by [129]–[132] n̄ = [exp(hf /kBTb)− 1]−1, where f

is the frequency of the mode, kB is the Boltzmann’s constant,

and Tb is the temperature.

A fixed-attenuation channel is a Gaussian channel, which

transforms the Gaussian input states into Gaussian states. For

example, if a single-mode Gaussian quantum state is trans-

mitted through a fixed-attenuation channel, it will remain

Gaussian at the output of the channel even though it has

experienced channel loss. We can model the impact of a

fixed-attenuation channel of transmissivity τ and thermal noise

variance Vn on the single-mode input Gaussian state ρ̂ by a

beam splitter transformation, with the transmissivity of the

beam splitter being τ and reflectivity 1−τ . In this channel

representation shown in Fig. 10 the Gaussian input state is
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Fig. 10. The beam splitter representation of a fixed-attenuation channel with
transmissivity τ and thermal noise variance Vn . In this channel representa-
tion, the transmitted signal mode is combined with a thermal mode of variance
Vn in a beam splitter of transmissivity τ . In the case of a pure-attenuation
channel (without thermal noise), the signal mode is simply combined with a
vacuum mode of variance Vn = 1.

combined with the thermal noise in the beam splitter, such

that one input mode of the beam splitter is the Gaussian

input state ρ̂ having the corresponding quadratures of q̂1, p̂1
and the second input mode is the thermal noise with cor-

responding quadratures of q̂2, p̂2. As a result of the beam

splitter transformation we have the output modes 1′ (corre-

sponding to the received quantum state ρ̂′ at the output of the

channel) and 2′ with corresponding quadratures of q̂ ′1, p̂
′
1 and

q̂ ′2, p̂
′
2 respectively. These output quadratures can be described

by [87]

R̂out =

( √
τI

√
1− τI

−
√
1− τI

√
τI

)

R̂in , (25)

where R̂in = (q̂1, p̂1, q̂2, p̂2), and R̂out = (q̂ ′1, p̂
′
1, q̂

′
2, p̂

′
2). As

a result, the quadrature variance of the received quantum state

at the output of the channel is given by V (q̂ ′1) = τV (q̂1) +
(1− τ)Vn , and V (p̂′1) = τV (p̂1) + (1− τ)Vn .

Let us now use such a channel representation to analyse

the evolution of a two-mode Gaussian quantum state over a

fixed-attenuation channel (the general multimode case can be

significantly more complex, e.g., [133]). We consider a TMSV

state with zero mean and covariance matrix in the form of

Eq. (19) as the input quantum state of the channel. There are

two settings for the transmission of a two-mode quantum state

between two parties, namely, the single-mode transfer and the

two-mode transfer [134]. We discuss each of these in detail.

Single-mode transfer: In this setting, the TMSV source is

placed at one of the parties’ site. In this case, only one mode

(mode 2) is transmitted through a fixed-attenuation channel,

with the other mode (mode 1) remaining unaffected. The

Gaussian output state has a zero mean and covariance matrix

in the following form [87], [134]

Msm =

(

vI
√
τ
√
v2 − 1Z√

τ
√
v2 − 1Z (τv + (1− τ)Vn )I

)

, (26)

where v = cosh (2r) is the quadrature variance of each mode

in the input TMSV state (r being the two-mode squeezing

parameter).

Two-mode transfer: In this setting, the TMSV source is

placed somewhere between the two parties. In this case, one

mode (mode 1) of the TMSV state is transmitted through

a fixed-attenuation channel with transmissivity τ1 and ther-

mal noise variance Vn1, while the other mode (mode 2)

being transmitted through another fixed-attenuation channel

with transmissivity τ2 and thermal noise variance Vn2. The

Gaussian output state has a zero mean and covariance matrix

in the following form [87], [134]

Mtm =

(

(τ1v + (1− τ1)Vn1)I
√
τ1τ2

√
v2 − 1Z√

τ1τ2
√
v2 − 1Z (τ2v + (1− τ2)Vn2)I

)

.

(27)

Here, we have assumed that the pair of fixed-attenuation chan-

nels are independent and that the two thermal noises are

uncorrelated.

IV. CONTINUOUS VARIABLE QUANTUM KEY

DISTRIBUTION

CV-QKD protocols using Gaussian quantum states have

been richly analysed in theory [12], [13], [15], [87], [118],

[135], [136], and they have also been implemented exper-

imentally [14], [20], [21], [23]–[25], [80], [137]–[140].

Among these contributions, the authors of [12]–[14], [20],

[21], [23]–[25], [118], and [137]–[140] exploit the so-

called prepare-and-measure (PM) scheme, where Alice pre-

pares CV quantum states and encodes the key informa-

tion onto the quantum states, which are then transmitted

over an insecure quantum channel to Bob. At the output

of the channel Bob receives the quantum states and mea-

sures them using classical homodyne or heterodyne detectors.

As a result, correlated, but non-identical, data is created

between Alice and Bob. Each PM scheme of CV-QKD can

be represented by an equivalent entanglement-based (EB)

scheme [15], [80], [87], [118], [135], [136], where Alice gen-

erates a two-mode entangled state,17 with one mode being

held by Alice and the other mode being transmitted through

an insecure quantum channel to Bob. Again, Alice and Bob

then proceed by measuring/observing their own modes using

classical homodyne or heterodyne detectors in order to create

correlated but non-identical data. Following the generation of

the correlated data, Alice and Bob proceed with classical post-

processing over a public, but authenticated, classical channel

(in both the PM scheme and EB scheme), so as to generate a

key, which remains secret even in the presence of Eve.

A. Prepare-and-Measure Approach

The PM CV-QKD is derived from the classic DV BB84 pro-

tocol of [3]. Hence, for the sake of enhancing readability, we

commence by detailing the DV BB84 protocol before delving

deeper into the specific instantiations of PM CV-QKD.

The DV BB84 protocol, conceived in 1984, is named after

its inventors Bennett and Brassard. It derives it’s strength from

the two fundamental laws of quantum physics, namely the ‘no-

cloning theorem’ and the ‘measurement’ of Fig. 3. Table III

lists an example of the DV BB84 protocol, which proceeds as

follows:

1) Alice generates a string of random bits, called the ‘raw

key’, which is much longer than the desired length of

the key.

17Please refer to Section III-C for CV entanglement.
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TABLE III
PREPARE-AND-MEASURE DISCRETE VARIABLE BB84 QKD EXAMPLE (IN THE ABSENCE OF EVE AND NOISE). (1) RANDOM BINARY KEY

GENERATED. (2) RECTILINEAR OR DIAGONAL POLARIZATION RANDOMLY SELECTED. (3) QUANTUM STATE PREPARED BY ENCODING THE

BINARY KEY OF STEP (1) USING THE POLARIZATIONS OF STEP (2). (4) MEASUREMENT BASIS RANDOMLY SELECTED. INSTANCES WHERE

THE PREPARATION AND MEASUREMENT BASIS MATCH ARE MARKED IN GREEN. (5) RECEIVED STATES MEASURED USING THE BASIS OF

STEP (4). (6) DETECTED STATES MAPPED ONTO BITS. INSTANCES WHERE THE DETECTED AND RAW KEY BITS DIFFER ARE MARKED

IN RED. (7) ONLY THOSE BITS RETAINED, WHICH HAVE THE SAME PREPARATION AND MEASUREMENT BASIS. (8) ERROR RATE

ESTIMATED FOR DETECTING THE PRESENCE OF EVE. (9) INFORMATION RECONCILIATION CORRECTS ERRORS IN THE

SIFTED KEY. (10) CORRECTED KEY FURTHER SHORTENED USING PRIVACY AMPLIFICATION,
HENCE REDUCING EVE’S INFORMATION ABOUT THE KEY

2) Alice exploits two conjugate pairs of states for encoding

the classical raw key into photon polarizations (qubits).

Specifically, the states within the pair are orthogonal,

while the two pairs are the conjugates of each other. In

our example, we consider the rectilinear polarization (+
in Table III), which maps bit 0 and 1 onto the vertical

(↑) and horizontal (→) polarizations, respectively, and

the diagonal polarization (× in Table III), which maps

bit 0 and 1 onto the 45◦ (ր) and 135◦ (ց) polariza-

tions, respectively. Alice randomly chooses either the

rectilinear or diagonal polarization for the action termed

as state preparation.

3) Alice encodes the raw key of Step (1) seen in Table III

based on the randomly chosen polarizations of Step (2)

in Table III using + or × and sends the resultant qubits

to Bob over an insecure quantum channel.

4) Neither Bob nor Eve knows the encoding basis of

Step (2) in Table III used by Alice. Therefore, Bob ran-

domly chooses either the rectilinear (+) or the diagonal

(×) basis for measuring the received qubits. Bob’s cho-

sen basis are listed in Step (4) of Table III. Since both

Alice and Bob randomly choose the polarization basis,

they will end up choosing the same basis roughly half

of the time. These instances have been marked in green

in Steps (2) and (4) of Table III.

5) If Bob measures the qubits received in the same basis

as they were prepared in Step (2) of Table III, then he

detects the transmitted bit correctly, provided that the

quantum channel is noiseless and there is no eavesdrop-

per. By contrast, if the measurement basis is not the

same as the preparation basis, then there is only a 50%

chance that Bob will detect the bit correctly. For exam-

ple, let us consider the second bit of Table III having the

value 0, which is encoded in the rectilinear basis (+),

but measured in the diagonal basis (×). A bit value 0 in

the rectilinear basis may also be expressed as a function

of the diagonal basis:

| ↑〉 ≡ 1√
2
| ր〉+ 1√

2
| ց〉. (28)

Consequently, when ↑ is measured in the diagonal basis,

it is equally likely to collapse either to the state | ր〉
(bit 0) or the state | ց〉 (bit 1).

6) The detected polarizations of Step (5) may be decoded

by invoking the same classical-to-quantum mapping as

the encoding operation at the transmitter. Bob detects

the bit correctly approximately 75% of the time. All

incorrect instances of bit detection are marked in red in

Steps (1) and (6) of Table III. Hence, Alice and Bob

acquire a correlated key through Steps (1) to (6).

7) Alice and Bob then communicate over an authenticated

classical channel for further processing the correlated

key they possess, hence termed as ‘classical post-

processing’. This post-processing commences with ‘bit

sifting’ during which Alice shares the basis used for

preparation in Step (2) of Table III, while Bob shares

the basis of Step (5) in Table III used for measurement.

Both Alice and Bob discard the specific bits whose

preparation basis and measurement basis differ, because

these instances may result in incorrect detection,

which are marked in red in Step (6) of Table III and

statistically represent about 25% of the bits. This in

turn ensures that both Alice and Bob possess the same

secret key in the absence of Eve, provided that the

quantum channel is noiseless. The length of this key

is approximately half of that of the raw key, in which

about half of the basis were different.

8) Recall that qubits cannot be cloned. Therefore, if

Eve is listening to the insecure quantum channel, she

cannot acquire a copy of the quantum information.

Furthermore, Eve unaware of the specific basis in

which Alice maps the classical bits onto the qubits,

until Alice reveals this information during the classical

post-processing stage. Consequently, similar to Bob,

Eve chooses a random basis for measurement, while

listening to the quantum-domain session between Alice

and Bob. This in turn introduces errors in the shared

key. Hence, for the sake of determining the presence

of Eve, Alice and Bob share a subset of the key and
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estimate the fraction of errors. If the resultant error

ratio is higher than a pre-determined threshold, the

transmission is considered ‘insecure’ and hence aborted.

9) By contrast, if the transmission is found to be secure,

the process termed as ‘information reconciliation’ is

invoked for correcting the dependencies between Alice’s

and Bob’s key, which may include for example the

dependencies arising from errors inflicted by a realistic

imperfect quantum channel as well as those due to

measurements by Eve. Let us now briefly elaborate

on the effect of channel errors. Consider the first bit

of Table III, which is prepared and measured in the

same basis. As shown in Table III, Alice transmits the

quantum state | →〉 corresponding to the classical bit

1. Let us consider the scenario where a channel error is

inflicted on Alice’s quantum state during transmission,

so that Bob receives the erroneous state | ↑〉. Now

even if Bob measures the received quantum state in

the same basis as it was prepared, his detected output

will be incorrect. Explicitly, Bob will detect bit 0 upon

measurement in the rectilinear basis (+), while Alice

transmitted bit 1. Hence, channel errors also introduce

dependencies between Alice’s and Bob’s keys.

10) Eve may acquire information about the secret key by

measuring a subset of the key as well as by listening to

the public classical information shared during the error

reconciliation process. For the sake of reducing this

information, the technique of ‘privacy amplification’ is

invoked. Explicitly, privacy amplification generates a

shorter key from the corrected key of Step (9), hence

reducing Eve’s information about the shared key.

In contrast to the PM DV-QKD scheme of Table III, which

transmits qubits, a Gaussian PM CV-QKD scheme exploits

Gaussian CV quantum states, as shown in Fig. 11.

Explicitly, the CV quantum states prepared by Alice are

Gaussian states (squeezed states or coherent states) which

are modulated by Gaussian distributions [12]–[14], [20], [21],

[24], [25], [118], [135], [137], [138], [140]. In fact, Alice

encodes a classical random variable drawn from a Gaussian

distribution onto a Gaussian quantum state, which is trans-

mitted to Bob, and then measured by him, thus extracting

a classical random variable which is correlated with Alice’s.

Furthermore, in contrast to the discrete measurement opera-

tions of Table III, the measurements of the received quantum

states are made by Gaussian measurements, namely by clas-

sical homodyne or heterodyne detection. Hence, Alice and

Bob share correlated Gaussian data in contrast to the corre-

lated binary stream of PM DV-QKD. The resultant correlated

Gaussian distributed random variable (rv) is then processed

classically for the sake of generating a virtually error free and

secure binary key.

We may notice in Fig. 11 that four different variants of a

Gaussian PM CV-QKD protocol exist, since we have two types

of Gaussian quantum states, i.e., squeezed and coherent states,

and two types of detectors, i.e., homodyne and heterodyne

detectors, which are detailed in Section III. In the succeeding

subsections, we provide further insights into each of these four

variants with the aid of slow-paced quantitative examples.

1) PM CV-QKD Relying on Squeezed States & Homodyne

Detection: Table IV gives an example of CV-QKD protocol

using squeezed states and homodyne detection [12], which

proceeds as follows:

1) Alice generates a real random Gaussian-distributed vari-

able a with zero mean µ = 0 and variance σ2 = vm , as

exemplified in Step (1) of Table IV.

2) Alice then decides to encode the Gaussian variable a

into either a p-squeezed or a q-squeezed vacuum state by

randomly choosing the p̂ or q̂ quadrature component for

squeezing. More specifically, Alice generates a binary

random variable u for choosing the p̂ or q̂ quadrature for

squeezing. The chosen quadratures are listed in Step (2)

of Table IV.

3) Alice next proceeds with quantum state preparation.

Explicitly, Alice prepares a single-mode squeezed

vacuum state having the covariance matrix M =
diag(1/v , v), where v = exp(2rs), and rs is the single-

mode squeezing. The prepared squeezed state is then

modulated (displaced) by an amount a of Step (1)

in Table IV, where the modulation variance satisfies

vm = v − 1/v . Specifically, depending on the quadra-

tures chosen in Step (2) of Table IV, Alice either sends a

q-squeezed state having a first moment of (aq , 0), aq =
a , or a p-squeezed state associated with the first moment

(0, ap), ap = a , as illustrated in Step (3) of Table IV.

For example, let us consider the first element of raw

Gaussian key having the value of 0.9 in Step (1) of

Table IV. Since p̂ quadrature is chosen in Step (2) of

Table IV for preparing the first quantum state, Alice pre-

pares a p-squeezed state having the first moment (0, 0.9).

The prepared and modulated squeezed states are then

transmitted over an insecure quantum channel to Bob.

4) For each incoming quantum state, Bob randomly

chooses either the q̂ or the p̂ quadrature for detection

depending on his own binary random variable u′, as

shown in Step (4) of Table IV.

5) Bob measures the received quantum state in either the

q̂ or the p̂ quadrature using homodyne detection based

on the chosen quadratures of Step (4). Note that in

order to warrant security, Alice and Bob choose differ-

ent basis for preparation and measurement (in a random

fashion). Consequently, when the preparation and mea-

surement basis are the same, which are marked in

green in Steps (2) and (4) of Table IV, Bob accu-

rately detects the transmitted quantum state, provided

that the transmission channel is noiseless and there is

no eavesdropper. For example, Bob chooses p̂ quadra-

ture for the first element of Gaussian key, as shown in

Step (4) of Table IV. Since the first element was also

prepared in the same quadrature, Bob correctly detects

a p̂-squeezed state having the first moment (0,0.9). By

contrast, if the preparation and detection quadratures do

not match, Bob detects a modified version of the trans-

mitted state, which are marked as blank red cells in

Table IV.

6) Finally, Bob obtains a real variable bq = b or bp = b

corresponding to the q̂ or the p̂ detection quadratures.
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Fig. 11. The quantum communication stage of Gaussian CV-QKD protocol in a PM scheme, which consists of three steps; preparation, transmission, and
detection. In a full-Gaussian protocol Alice encodes a classical Gaussian-distributed random variable (a) onto Gaussian quantum states (squeezed or coherent
states). The prepared states are transmitted through an insecure quantum channel to Bob. In the detection step, received quantum states are measured using
Gaussian measurements (homodyne or heterodyne detection) to obtain a classical Gaussian-distributed random variable (b), which is correlated with Alice’s
random variable (a).

TABLE IV
PREPARE-AND-MEASURE CV-QKD EXAMPLE RELYING ON SQUEEZED STATES AND HOMODYNE DETECTION (IN THE ABSENCE OF EVE AND NOISE).

(1) REAL RANDOM VARIABLE a GENERATED USING A GAUSSIAN DISTRIBUTION HAVING MEAN µ = 0 AND VARIANCE σ2 = vm . (2) p̂ OR q̂
QUADRATURE RANDOMLY CHOSEN FOR SQUEEZING. (3) SQUEEZED STATE PREPARED HAVING THE FIRST MOMENT (a, 0), IF q̂ QUADRATURE IS

CHOSEN IN STEP (2) AND THE MOMENT (0, a), IF p̂ QUADRATURE IS CHOSEN IN STEP (2). (4) p̂ OR q̂ DETECTION QUADRATURE RANDOMLY

SELECTED. INSTANCES WHERE THE PREPARATION AND DETECTION QUADRATURES MATCH ARE MARKED IN GREEN. (5) RECEIVED STATES

DETECTED USING THE QUADRATURES OF STEP (4). THE DETECTION OUTCOME IS NOISY (OR CORRUPTED), WHEN THE PREPARATION AND

DETECTION BASIS DO NOT MATCH, HENCE ARE MARKED IN RED. (6) DETECTED STATES MAPPED ONTO GAUSSIAN KEY. (7) ONLY

THOSE KEY VALUES ARE RETAINED, WHICH HAVE THE SAME PREPARATION AND MEASUREMENT QUADRATURE

The resulting variables constitute the detected Gaussian

key, as shown in Step (6) of Table IV.

7) Following the measurement of all incoming states by

Bob, classical post-processing over the public channel

commences via a sifting operation. In this operation,

Alice and Bob reveal to each other which of the two

randomly selected quadratures they used for preparing

(Alice) and measuring (Bob) the information, discarding

non-tallying random bit pairs (i.e., u �= u′). A natu-

ral way of achieving this is that Alice reveals for each

Gaussian rv the specific value of u (i.e., whether she

displaced the q̂ or the p̂ quadrature), and Bob only

retains those, where he measured the relevant tally-

ing quadrature (i.e., u = u′), as shown in Step (7) of

Table IV.

Let us now consider the second variant of Fig. 11.

2) PM CV-QKD Relying on Squeezed States & Heterodyne

Detection: Another squeezed-state protocol was developed

in [118], in which Bob uses heterodyne detection rather

than homodyne detection and measures both the q̂ and p̂

quadratures for obtaining (bq , bp). In the sifting step of this

protocol, Bob then disregards one of his quadrature measure-

ments, depending on Alice’s specific choice of quadrature

preparation. This protocol can be seen as a noisy version of

the protocol with squeezed states and homodyne detection,

since the heterodyne detection imposes vacuum noise on the

measurement. When Bob’s Gaussian rv are the reference of

error correction (see below) in the classical post-processing,

the heterodyne detection protocol exhibits a better robustness

against the channel noise than the protocol associated with

homodyne detection [118]. Let us now focus our attention on

the third variant of Fig. 11.

3) PM CV-QKD Relying on Coherent States & Homodyne

Detection: Table V gives an example of the PM CV-

QKD protocol using coherent states and homodyne detec-

tion [13], [14], [116], which can be described as

follows:

1) Alice generates random real numbers aq cho-

sen from an independent Gaussian distribution of

variance v ′m .
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TABLE V
PREPARE-AND-MEASURE CV-QKD EXAMPLE RELYING ON COHERENT STATES AND HOMODYNE DETECTION (IN THE ABSENCE OF EVE AND NOISE).

(1) REAL RANDOM GAUSSIAN VARIABLE aq GENERATED. (2) REAL RANDOM GAUSSIAN VARIABLE ap GENERATED. (3) COHERENT STATE PREPARED

HAVING A MEAN VALUE OF (aq , ap). (4) p̂ OR q̂ DETECTION QUADRATURE RANDOMLY SELECTED. (5) RECEIVED STATES DETECTED USING THE

QUADRATURES OF STEP (4). (5) DETECTED STATES MAPPED ONTO GAUSSIAN KEY. (6) ALICE RETAINS aq OR ap DEPENDING ON BOB’S

DETECTION QUADRATURES. THE RETAINED KEY VALUES ARE MARKED IN GREEN IN STEPS (1) AND (2)

2) Alice also generates another set of random real numbers

ap , which are also chosen from an independent Gaussian

distribution of variance v ′m .

3) Alice then prepares a coherent state, which is modu-

lated (displaced) by the amounts of aq and ap generated

previously in Steps (1) and (2), so that the result-

ing coherent state has a mean value of (aq , ap). For

example, aq = 0.9 and ap = 1.2 are chosen for the

first element of key in Steps (1) and (2), respectively.

Consequently, Alice prepares a coherent state having a

mean value of (0.9,1.2). The prepared coherent states

transmitted over an insecure quantum channel to Bob.

4) Bob generates a random variable u′ for each incoming

state and chooses either the q̂ or the p̂ quadrature for

detection depending on the value of u′.
5) Finally, Bob measures either the q̂ or the p̂ quadrature

component using homodyne detection depending on the

chosen quadratures of Step (4), hence obtaining a real

variable bq or bp , respectively. For example, as can be

seen in Table V, p̂ quadrature is chosen in Step (4)

for detecting the first element of the key. Consequently,

when Bob measures the first received coherent state

using the p̂ quadrature, he obtains a value of 1.2.

6) When the quantum communication phase is completed

and all the incoming states have been measured by Bob,

classical post-processing over a public channel is com-

menced by applying sifting, where Bob reveals for each

Gaussian rv the specific value of u′ (i.e., whether he

measured the q̂ or the p̂ quadrature), and Alice retains

aq or ap depending on the value of u′. Note that in this

protocol only one of the two real random variables gen-

erated by Alice is used for the key after the sifting stage.

For example, Alice only retains ap = 1.2 for the first

element of key, since Bob measured the received state

in the p̂ quadrature. The retained key values are marked

in green in Steps (1) and (2) of Table V.

Finally, we now consider the fourth variant of Fig. 11.

4) PM CV-QKD Relying on Coherent States & Heterodyne

Detection: Another coherent-state protocol was developed

in [117], where Bob uses heterodyne detection rather than

homodyne detection and measures both the q̂ and p̂ quadrature

components for obtaining (bq , bp) at the cost of imposing

vacuum noise on the measurement. In this protocol, sifting

is no longer needed, since both of the real random variables

generated by Alice are used for the generation of the key,

hence potentially resulting in higher secret key rates.

All the four CV-QKD protocols discussed above in the con-

text of Fig. 11 yield a correlated Gaussian key between Alice

and Bob. Please note that the Gaussian key generated in the

examples above is the same for both Alice and Bob. However,

when Eve is present or in the inevitable presence of noise,

Bob’s key will be a noisy version of Alice’s key. Hence, Bob

and Alice will possess correlated but unidentical Gaussian

keys. Analogous to the PM DV-QKD of Table III, parameter

estimation is then performed (in the classical post-processing

stage, following the sifting step), where the two parties reveal

a randomly chosen subset of their correlated but unidentical

Gaussian key. This allows them to estimate the parameters of

the channel, such as the channel’s transmissivity and the level

of channel noise, as well as to limit the maximum amount

of information Eve can infer about their values. This step is

followed by an information reconciliation procedure, which

involves quantizing Alice’s and Bob’s correlated Gaussian data

into binary keys as well as performing error correction, hence

resulting in a near-error-free binary key. As discussed further

later, this procedure normally relies on the employment of

low density parity check (LDPC) codes [20]. QKD can be

operated in two reconciliation scenarios, namely direct rec-

onciliation [141] and reverse reconciliation [13], [14]. In the

direct reconciliation protocol Alice’s Gaussian data constitute

the reference and she sends classical correction information to

Bob which may be overheard by Eve. Then Bob corrects his

key elements to arrive at the same values as Alice. By contrast,

in the reverse reconciliation protocol Bob’s Gaussian data con-

stitute the reference and must be estimated by Alice (also by

Eve) [13], [14]. Based on the upper bound on Eve’s informa-

tion estimated during the parameter estimation stage, Alice and

Bob apply a privacy amplification protocol, which produces a

shorter binary key in the spirit of expurgating Eve’s informa-

tion about the shared key, hence Eve’s information about the

key is substantially reduced.

Whilst in Fig. 11 we had four variants, now there are

eight protocol choices for characterising Gaussian CV-QKD

in a PM scheme. Explicitly, this is because we must consider
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Fig. 12. Gaussian CV-QKD implementation parameters.

both the type of quantum state (squeezed states or coherent

states) which Alice prepares, and also the type of detection

(homodyne or heterodyne detection) which Bob applies to

the received states, as well as the specific type of reconcilia-

tion (direct reconciliation or reverse reconciliation). However,

recall that all PM schemes have an equivalent EB scheme.

Hence, different variants of CV-QKD may be implemented

using the parameters summarized in Fig. 12. Next we discuss

the entanglement-based approach for implementing CV-QKD

protocols.

B. Entanglement-Based Approach

All the Gaussian PM protocols can be described in an uni-

fied way using the EB scheme [87], [135] shown in Fig. 13.

Here Alice generates a TMSV state, which we refer to as

ρ̂AB . She keeps mode A, and sends mode B to Bob. At some

time later, Alice and Bob use an unbalanced beam splitter of

transmissivity (TA at Alice’s side and TB at Bob’s side), to

carry out generalized heterodyne detections. If Alice applies

homodyne detection (TA = 1), the prepared state should be

a squeezed state and if Alice makes a heterodyne detection

(TA = 1/2), the prepared state should be a coherent state. The

security of the CV-QKD protocols is mostly analysed using

their equivalent EB scheme, where a two-mode entangled state

is shared between Alice and Bob before their detection obser-

vations. Note, in the security analysis of CV-QKD discussed

next we will assume that the number of exchanges between

Alice and Bob is considered to be infinite (the asymptotic

regime). This assumption is adopted in most QKD security

analyses since the ability to estimate some quantities (e.g.,

average values) exactly in the infinite sample-limit, greatly

simplifies the analyses.

C. CV-QKD Security Analysis

The most powerful, and most general, attack that Eve

can implement against QKD is known as a coherent

attack [87], [135]. In this attack, Eve prepares her ancillary

system in a global quantum state, which means she prepares

an arbitrary joint (entangled) state of the ancillae. After the

interaction of the global ancillary system with the signals sent

by Alice, the output ancillary system is stored in a quan-

tum memory. Once the classical post-processing relying on

Fig. 13. The quantum communication stage of Gaussian CV-QKD proto-
col in an EB scheme. Alice generates a Gaussian two-mode entangled state
(TMSV state) ρ̂AB . She keeps mode A, and sends mode B through an insecure
quantum channel to Bob. If Alice applies homodyne detection, i.e., TA = 1
(heterodyne detection, i.e., TA = 1/2) to mode A, she remotely projects
the other mode of the entangled state onto a squeezed state (coherent state).
Similar to the PM scheme, Bob measures the received state using a Gaussian
measurement (homodyne detection, i.e., TB = 1 or heterodyne detection,
i.e., TB = 1/2). As a result of their measurements, Alice and Bob end up
with two sets of classical Gaussian-distributed random variables which are
correlated to each other.

the public channel is finished, Eve applies an optimal joint

measurement over the ancillary system stored in the quantum

memory to maximize her knowledge on the quantum informa-

tion of the trusted parties. The security analysis of CV-QKD

in the face of coherent attacks is very complex. However,

under some trivial constraint imposed on the classical post-

processing protocol, collective attacks are just as detrimental

as coherent attacks [142]. In a collective attack against QKD

Eve prepares her ancillary system in a product state of identi-

cally prepared ancillae. After interaction of each ancilla with

a single signal sent by Alice, the output ancilla is stored in a

quantum memory. Once the classical post-processing is com-

pleted, Eve applies an optimal joint measurement over the

ensemble of ancillae in the quantum memory.

For a realistic reconciliation algorithm, the asymptotic CV-

QKD key rate (bits per pulse) against collective attacks is

given by [87] and [135] K = ξIAB − IE , where IAB is

the mutual information between Alice and Bob (i.e., between

Alice’s variable, a, as well as Bob’s variable, b), and 0< ξ <1

is the reconciliation efficiency. This efficiency reflects that in

a realistic reconciliation algorithm, Alice and Bob acquire not

all of the maximum attainable mutual information. Note that

for a perfect reconciliation algorithm we will have ξ = 1.

Furthermore, IE is the Holevo bound defined in [87] and [135]

as an upper bound on the quantum information stolen by Eve.

In the reconciliation step, if we assume that Alice’s data rep-

resents the reference, then IE = IAE is the Holevo bound

on the mutual information between Eve’s quantum memory

and Alice’s variable. By contrast, if we assume that Bob’s

data is the reference, then IE = IBE is the Holevo bound

on the mutual information between Eve’s quantum memory

and Bob’s variable. Note that IAB remains the same, regard-

less of whose data represents the reference of reconciliation.

It was also shown [143] that in the family of collective

attacks, Gaussian attacks based on Gaussian operations18 are

18Gaussian operations are linear operations with respect to the quadra-
ture amplitudes. Such operations maintain the Gaussian character of Gaussian
states.
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Fig. 14. Implementation of optimal collective Gaussian attack (entangling-
cloner attack) by Eve, in which Eve prepares an entangled state, ρ̂E1E2

,
interacts mode E1 with the signal sent from Alice in a beam splitter (with the
same transmissivity as the channel transmissivity). The output mode, mode B′,
is transmitted to Bob through a perfect quantum channel. The other output,
mode E ′

1, and the other arm of Eve’s entangled state, mode E2, are stored in
Eve’s quantum memory, to be collectively measured at the end of the classical
post-processing.

the optimal attacks Eve can implement so as to minimize the

secret key rate K.19

Let us consider a Gaussian CV-QKD protocol in the EB

scheme, where Alice generates a TMSV state ρ̂AB , and keeps

mode A while sending mode B to Bob over an insecure

quantum channel. In the optimal collective Gaussian attack

(which is also referred to as the entangling-cloner attack [14])

shown in Fig. 14, Eve models the quantum channel (with

transmissivity of 0 ≤ τ ≤ 1 and thermal noise variance of

ω ≥ 1) by a TMSV state ρ̂E1E2
having a quadrature vari-

ance of ω and a beam splitter of transmissivity τ . In fact,

the quadrature variance of ρ̂E1E2
and the transmissivity of

the beam splitter in Fig. 14 are tuned in order to inject the

same noise and to impose the same attenuation as in the

original channel, respectively. In this beam splitter Eve com-

bines the signal mode gleaned from Alice (mode B) with

one mode (mode E1) of the TMSV state. The first output

of the beam splitter (mode B′) which is the quantum signal

received by Bob is given by q̂B ′ =
√
τ q̂B +

√
1− τ q̂E1

, and

p̂B ′ =
√
τ p̂B +

√
1− τ p̂E1

. The second output of the beam

splitter (mode E ′
1) and mode E2 of the TMSV state ρ̂E1E2

are stored by Eve in a quantum memory. Once the classi-

cal post-processing over the public channel is completed, this

quantum memory is detected by means of an optimal joint

measurement which estimates Alice’s data (in direct reconcil-

iation) or Bob’s data (in reverse reconciliation). Note that in a

Gaussian CV-QKD protocol, the asymptotic key rate against

optimal collective Gaussian attacks can be calculated through

the equivalent EB scheme based on the covariance matrix of

the two-mode entangled state shared between Alice and Bob

before their detection observations [87], [135], [136].

V. FREE-SPACE CHANNELS TO AND FROM SATELLITES

A. Sources of Loss in FSO Channels

The main sources of loss in FSO communication are

diffraction, absorption, scattering and atmospheric turbu-

lence [144]–[148], as encapsulated in Fig. 15. As will be dis-

cussed in this section, Diffraction-induced beam-spreading and

19Gaussian collective attacks are as strong as coherent attacks in the limit
of an infinite number of quantum states exchanged, however, it is not known
this is the case for a realistic finite-length key protocols.

Fig. 15. Sources of losses in FSO channels and their effects on optical signal.
Diffraction-induced beam-spreading and turbulence-induced beam-wandering
as well beam-spreading dominate in good weather conditions.

turbulence-induced beam-wandering as well beam-spreading

are dominant in good weather conditions, while absorption,

scattering and scintillation are known to be relatively minor

issues in good weather conditions.

Diffraction: Diffraction is a ubiquitous form of the nat-

ural wave propagation phenomenon experienced by light

beams, and leads to beam-spreading (beam-broadening).

Consequently, a certain fraction of the transmitted beam may

not be collected by the receiver, since the diameter of the

received beam is longer than the receiver’s aperture, hence

resulting in divergence loss, which increases upon increasing

the length of the link. This loss may be mitigated by increasing

the receiver’s aperture as well as by reducing the transmis-

sion wavelength. However, a suitable compromise between the

divergence loss, receiver size and cost as well as other trans-

mission losses must be struck. Furthermore, a narrow beam is

desirable to reduce diffraction losses, but this makes the link

more sensitive to any misalignment between the transmitter

and receiver.

Absorption and scattering: Absorption and scattering are

imposed by the constituent gases and particles of the atmo-

sphere. Both absorption as well as scattering impose atten-

uation on an optical wave. Explicitly, absorption is the phe-

nomenon where the energy of optical wave is absorbed by

the atmospheric particles, while scattering results in redistribu-

tion of the optical energy in arbitrary directions. Furthermore,

both effects are strongly wavelength-dependent and become

more pronounced when the transmission wavelength is com-

parable to the size of the atmospheric particles. Both scattering

and absorption can be neglected, since they can be substan-

tially mitigated by an appropriate choice of the communication

wavelength. Explicitly, there is a negligible absorption at

the visible wavelengths spanning from 0.4 to 0.7 mm. For

these reasons, scattering and absorption was also neglected

in [18], [54], [100]–[102], [110], and [149]–[151]. However,

adverse weather conditions, for example fog, rain and snow,
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may severely limit the transmissivity of atmospheric channels,

as discussed below:

• Fog includes particles having dimensions comparable to

the transmission wavelength, hence it is the main source

of atmospheric absorption and scattering. More specifi-

cally, dense fog may ultimately make optical transmission

infeasible [152]. The impact of fog is generally quanti-

fied in terms of atmospheric visibility and the associated

attenuation per unit length in dB/km. Explicitly, visi-

bility is defined as the distance traversed by a parallel

beam of light until its intensity drops to 2% of the orig-

inal value [153], while the specific attenuation of fog in

dB/km, denoted as αfog, may be represented using the

popular empirical Mie scattering model [147]:

αfog(λ) =
3.91

V

(

λ

550

)−p

, (29)

where V is the visibility range in km, λ is the operating

wavelength (550 nm is used as a reference wavelength

for visibility range) and p is the size distribution coef-

ficient of scattering obtained from the Kim or Kruse

model [153]. Specifically, the Kim model gives [154]:

p =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1.6 V > 50
1.3 6 < V < 50
0.6V + 0.34 1 < V < 6
V − 0.5 0.5 < V < 1
0 V < 0.5,

(30)

while the Kruse model gives [155]:

p =

⎧

⎨

⎩

1.6 V > 50
1.3 6 < V < 50

0.585V
1

3 V < 0.6.

(31)

• From the detrimental effects of fog, rain and snow, rain

has the least impact, because the size of rain droplets

is large as compared to the transmission wavelength.

The specific attenuation due to rain my be predicted

using [147]:

αrain = k1R
k2 , (32)

where R is the rain rate in mm/hr, while k1 and k2 are

modeling parameters, whose value depends on both the

size of rain droplets and on the temperature.

• The attenuation due to snow is higher than that of rain,

but less than that of fog. However, heavy snow may

severely reduce the link’s availability, making it compa-

rable to that of fog. The specific attenuation of snow is

given by [147]:

αsnow = aS b , (33)

where S is the snow rate in mm/hr, while the constants

a and b are set to:

a = 5.42× 10−5 + 5.49, b = 1.38 (34)

in dry snowy conditions and to:

a = 1.02× 10−4 + 3.78, b = 0.72 (35)

in wet snowy conditions.

Hence, adverse weather conditions may significantly attenuate

the optical signal, hence substantially degrading the avail-

ability of the FSO link. The transmission wavelength should

be judiciously chosen to minimize these losses. Furthermore,

sufficient link margin should be maintained for the sake of

enhancing the link’s availability.

Atmospheric turbulence: Atmospheric turbulence arises due

to random fluctuations in the refractive index caused by

stochastic variations of temperature. The atmosphere con-

tains turbulent random inhomogeneities of various scales -

also referred to as turbulent eddies [145]. They range from

a large-scale (the outer scale of turbulence) to a small-scale

(the inner scale of turbulence). These eddies affect optical

wave-propagation through the atmosphere in different ways,

depending on their size. In general, large scale eddies produce

refractive effects and hence predominately distort the phase

of the propagating wave, while small scale eddies are mostly

diffractive in nature and therefore distort the amplitude of the

wave [144], [145]. The most important effects resulting from

the atmospheric eddies are beam-wandering, beam-spreading

and beam-scintillation [144]–[146], [148]. We describe each of

these three effects in more detail: (i) Random deviation of the

beam from its original path is referred to as beam-wandering,

which is caused by large-scale turbulent eddies, whose

size is large compared to the beam-width. Beam-wandering

causes time-varying power fades [54], [145], [146], [148].

(ii) Atmospheric turbulence results in a randomly fluc-

tuating beam-width in the receiver’s aperture plane. The

broadening of the beam-width (when averaged over time)

beyond that due to diffraction is termed as turbulence-induced

beam-spreading [54], [57], [101], [145], [148], [156]. (iii) We

define scintillation by fluctuations in the received irradi-

ance (intensity) within the beam’s cross section. Scintillation

includes the temporal variation in the received irradi-

ance and spatial variation within the receiver’s aperture.

Scintillation is mainly caused by small-scale turbulent

eddies [144]–[146], [148].

B. Sources of Loss in FSO Channels to and From Satellites

In satellite-based quantum communications, the uplink and

downlink channels are very different, since the atmospheric

turbulence layer only occurs near the transmitter on an uplink,

and only near the terrestrial receiver on a downlink. In

the following, we briefly highlight how these two chan-

nels are affected by the above-mentioned turbulence-induced

effects.

Uplink channels: For typical dimensions of the aperture

size embedded in the ground station, the uplink optical beam

first propagates through the turbulent atmosphere and its

beam-width is much narrower than the size of the large-

scale turbulent eddies [54], [145], [146], [148]. This makes

beam-wandering the dominant effect in the uplink [54], [145],

[146], [148]. Turbulence-induced beam-spreading also occurs

to some extent in the uplink [54], [145]. As a result, the beam

received by the satellite (when averaged over time) is wider

than that associated with diffraction [54], [145]. Fig. 16 illus-

trates these two atmospheric effects, namely beam-wandering
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Fig. 16. Illustration of beam-wandering (i.e., random deviation of the beam
from its original path) and beam-spreading (including spreading induced by
diffraction and spreading induced by turbulence) in uplink channels.

and beam-spreading in the uplink. Scintillation is not dominant

in the uplink [145], [148].

Downlink channels: In contrast to the uplink case, the down-

link optical beam propagates through the turbulent atmosphere

only in the final part of its path. Considering the typical aper-

ture size of the optical system embedded in the satellite, the

beam-width at its entry into the atmosphere is likely to be

larger than the scale of the turbulent eddies. As such, beam-

wandering in the downlink tends to be less important relative

to uplink channels [54], [145], [146], [148]. The photonic

losses in the downlink are likely to be dominated by diffraction

effects [54], [57]. Scintillation can occur to some extent in the

downlink [145], [148]. However, as a consequence of aper-

ture averaging, the downlink scintillation effects imposed on

the detector tend to be negligible, when the receiver includes

a large-diameter (>0.5 m) telescope [144], [145], [148].

C. Atmospheric Fading Channels

In atmospheric channels the transmissivity, ηt , fluctuates

due to turbulence-induced effects. These fading channels

can be characterized by the probability distribution of the

transmission coefficients, η (where η =
√
ηt ), which is

denoted by p(η). For a fading channel associated with the

probability distribution p(η) the mean fading loss in dB is

given by −10log10(
∫ η0
0 η2p(η)dη), where η0 is the maximum

value of η.

As discussed in Section V-B, beam-wandering is the domi-

nant turbulence-induced effect in the uplink. As an aside, we

note that beam-wandering is expected to dominate the fading

contributions in many terrestrial atmospheric communication

scenarios [100], [102], [110], [111], [150].

D. Beam-Wandering Model

Here, we describe the probability distribution of the chan-

nel coefficients when the channel effects are dominated by

beam-wandering. In the first instance we will assume that the

beam-width at the receiver’s aperture is fixed. That is, initially

we will ignore any fluctuations in the beam-width caused by

atmospheric turbulence.

In practice, beam-wandering causes the beam-center to be

randomly displaced (along the x and y coordinates) from the

center of the receiver’s aperture plane. More explicitly, the

beam’s center position (xl , yl ) randomly fluctuates around

a fixed point, (xd , yd ), hence its two-dimensional Gaussian

distribution is given by [100]

p(xl , yl ) =
1

2πσ2
b

exp

(

− (xl − xd )
2 + (yl − yd )

2

2σ2
b

)

, (36)

where σb is the beam-wandering standard deviation. Thus,

the beam-deflection distance, l =
√

x2
l
+ y2

l
, i.e., the dis-

tance between the beam-center and the aperture-center at (0, 0)

fluctuates according to the Ricean distribution [100]

p(l) =
l

σ2
b

I0

[

ld

σ2
b

]

exp

(

− l2 + d2

2σ2
b

)

, (37)

where d =
√

x2
d
+ y2

d
is the distance between the aperture-

center and the fluctuation-center (xd , yd ), while I0[.] is the

modified Bessel function. Note that d = 0 means that the

beam-center fluctuates around the aperture-center. In beam-

wandering the channel transmission coefficient, η, is a function

of the beam-deflection distance, l, and is given by [100]

η2 = η20 exp

(

−
(

l

S

)γ)

, (38)

where γ is the shape parameter, S is the scale parameter and

η0 is the maximum value of η. The latter three parameters are

given by

γ = 8h
exp(−4h)I1[4h]

1− exp(−4h)I0[4h]

[

ln

(

2η20
1− exp(−4h)I0[4h]

)]−1

,

S = β

[

ln

(

2η20
1− exp(−4h)I0[4h]

)]−(1/γ)

,

η
2
0 = 1− exp(−2h), (39)

where I1[.] is the modified Bessel function, and where h =
(β/W )2, with β being the receiver’s aperture radius and W the

beam-spot radius at the receiver’s aperture. Note that both β
and W have the same units (meter). A schematic illustration of

beam-wandering is shown in Fig. 17. According to Eqs. (37)

and (38), the probability distribution p(η) can be described by

the log-negative Weibull distribution [100]

p(η) =
2S2

σ2
b
γη

(

2 ln
η0
η

)

(

2

γ
−1

)

I0

[

Sd

σ2
b

(

2 ln
η0
η

)
1

γ

]

× exp

(

−1

2σ2
b

[

S2
(

2 ln
η0
η

)
2

γ

+ d2

])

(40)

for η ∈ [0, η0], with p(η) = 0, otherwise. In some of the

earlier literature, e.g., [157], the log-normal distribution was

used. However, at the time of writing we are aware that the

log-negative Weibull distribution more accurately describes

the operationally important distribution tail [100]. In Fig. 18

the log-negative Weibull distribution is shown for fixed val-

ues of the beam-wandering standard deviation σb and the

receiver’s aperture radius β, and for different values of the

beam-spot radius at the receiver’s aperture W (the mean fading

loss increases with increasing W). In Fig. 19 the log-negative
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Fig. 17. A schematic illustration of beam-wandering in the receiver’s aperture
plane, where the beam-center (xl , yl ) is randomly displaced (along the x and
y coordinates) from the center of the receiver’s aperture plane located at (0, 0).

Fig. 18. The log-negative Weibull distribution for σb = 0.7, β = 1, and
d = 0 with different values of W. For these parameters, W = 0.8 leads to a
mean fading loss of 2.7 dB and W = 2 leads to a mean fading loss of 5.5 dB.

Weibull distribution is shown for the fixed values of W and

β, with different values of σb (the mean fading loss increases

with increasing σb).

Let us now we analyse the influence of beam-width fluc-

tuations (caused by atmospheric turbulence) on the beam-

wandering model just given. We refer to this effect as

turbulence-induced beam-spreading. In doing this analysis, we

will assume beam deformation does not occur - meaning the

beam shape remains circular as it traverses the atmospheric

channel (beam-deformation has been analysed in [101]). In

turbulence-induced beam-spreading, the beam-spot radius W

randomly changes in the receiver’s aperture plane [101] with

the probability distribution p(W). Including this effect in our

beam wandering model, the transmission coefficient of the

channel, η, is now a function of the two random variables

l and W according to Eqs. (38) and (39). We define a new

variable Θ by setting Θ = 2 ln(Ww0
), where w0 is the initial

Fig. 19. The log-negative Weibull distribution for W = 1.1 and β = 1, and
d = 0 with different values of σb . For these parameters, σb = 1.5 leads to
a mean fading loss of 7.4 dB and σb = 5.5 leads to a mean fading loss of
17.8 dB.

beam-spot radius at the radiation source. This is useful since

Θ randomly changes according to a normal distribution with

the mean value 〈Θ〉 and standard deviation σΘ [101]. Hence

we have

p(Θ) =
1

√

2πσ2Θ

exp

(

− (Θ− 〈Θ〉)2
2σ2Θ

)

. (41)

With the inclusion of beam-width fluctuations in beam wan-

dering, the calculation of a closed-form solution for p(η) is not

straightforward. However, given the knowledge of the proba-

bility distribution of p(l) of Eq. (37) and p(Θ) of Eq. (41),

we can calculate certain important quantities after averaging

over all values of the channel’s transmission coefficient. For

instance, the mean fading loss in dB of a fading channel

with the inclusion of beam-width fluctuations is now given

by −10log10(
∫

η2(l ,Θ)p(l ,Θ)dldΘ). Assuming that atmo-

spheric turbulence is isotropic [101] and d = 0, the mean

fading loss in dB of a fading channel (after the inclusion

of beam-width fluctuations in the beam-wandering model) is

given by −10log10(
∫

η2(l ,Θ)p(l)p(Θ)dldΘ). Note, with the

inclusion of beam-width fluctuations, the maximum value of

the channel’s transmission coefficient η0 is no longer fixed but

rather randomly changes.

Optical losses in the downlink are usually orders of mag-

nitude lower relative to uplinks [40], [66]–[68]. This means

that if the “price” is paid in terms of placing the critical quan-

tum technology on board the satellite (rather than the easier

case of maintaining the quantum technology in ground sta-

tions), then much better quantum communication channels can

be obtained. As alluded to earlier, the principal reason for

this improvement is that in the downlink, diffraction of the

beam is the main contributor to photon losses - not beam-

wandering as in the uplink (see Fig. 20). The important fact

is that by the time the downward-link beam hits the main

turbulence-inducing layers of the atmosphere (this layer com-

mences at about 20 km from ground level) the beam is much

closer to its target and therefore any induced beam-wandering

is less effective. Clearly, as opposed to most communication

channels, there will be no directional reciprocity in channel
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Fig. 20. Illustration of diffraction-induced beam-spreading as the main
contributor to photon losses in downlink channels.

throughput for quantum communications with satellites. The

recent experimental deployments of quantum communication

in space have mostly exploited the more favourable down-

link channel conditions [66], [67]. The losses in the downlink

can then be modelled quite simply (to first order) through

diffraction-only effects with the beam divergence following a

λ/D scaling, where D is the diameter of the satellite telescope

and λ is the transmission wavelength [40].

E. Estimation of a FSO Channel

Note that the rate of atmospheric fluctuations we consider

are on the order of a few kHz, which is at least a thousand

times slower than the typical transmission rates [145]. This

means that the channel’s transmission coefficient can be mea-

sured at the cost of additional (classical) transmission and

receiver complexity [17], [149], [150], [158]. These chan-

nel measurements may be carried out using several schemes,

e.g., by transmitting coherent (classical) light pulses that

are intertwined with the quantum information [149], [150]

or by transmitting a local oscillator (i.e., a strong coher-

ent laser pulse which is mixed with the signal field in the

homodyne detection and serves as a phase reference) [17].

In [17] measurement of the atmospheric channel’s transmis-

sion coefficients was carried out in real time at the receiver

by passing a local oscillator through the channel in a mode

orthogonally polarized to the signal. The technique of measur-

ing the atmospheric channel’s transmission coefficient by an

auxiliary classical laser beam was introduced in 2012 [149],

and its practical employment was demonstrated for a one-way

communication link in 2015 [150]. The same technique based

on the intensity of the signal itself was realized in [158].

VI. ENTANGLEMENT DISTRIBUTION AND CV-QKD

IMPLEMENTATION VIA SATELLITE

A. Entanglement Distribution and Standard QKD Protocols

In the context of satellite-based quantum communication

we are faced with two different channels, namely, the uplink

Fig. 21. Illustration of various architectures for implementing satellite-based
quantum communication. In (a) ((b)) quantum states are transmitted from
the ground station (satellite) to the satellite (ground station) over an uplink
(a downlink) channel. In (c) quantum states are transmitted from one ground
station over an uplink channel to the satellite, and then reflected at the satel-
lite to the second ground station over a downlink channel. In (d) quantum
states are generated on board the satellite, and then transmitted through dif-
ferent downlink channels to separate ground stations. In (e) quantum states are
transmitted from two separate ground stations over two different uplinks to
the satellite, at which quantum measurements are performed on the received
quantum states, and the classical measurement results are communicated back
to the ground stations.

(ground-to-satellite) channels and the downlink (satellite-to-

ground) channels. In the uplink, the ground station trans-

mits signals to the satellite receiver, and in the downlink,

the satellite transmits signals to the ground station receiver.

Correspondingly, there are several possible architectures for

implementing satellite-based quantum communication depend-

ing on the types of links utilized. Some of these config-

urations are illustrated in Fig. 21. Explicitly, the schemes

(a) and (b) illustrate the uplink and downlink channels,

respectively (both links have been demonstrated in the DV

domain [65], [66], [68]). In scheme (c) of Fig. 21, the deploy-

ment of quantum technology at the satellite is minimized, since

the satellite is utilized only in a reflector mode (i.e., a sim-

ple relay). As a proof of concept for the reflecting paradigm,

we note the recent experimental tests of [47]–[49], where

single photons (weak laser coherent pulses) emitted by the

ground station were reflected (and subsequently detected on

the ground) by a LEO satellite via the satellite’s cube retro-

reflectors. In scheme (c) the complex quantum engineering

components are limited to the ground stations, since the source

of quantum states is located in one of the ground stations and

the receiver of quantum states is located in the other ground

station. Although satellite reflection towards another station
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constitutes a sophisticated engineering task in its own right,

it does not require onboard generation of quantum commu-

nication information. There are many practical advantages in

deploying quantum communication technology at the ground

stations, such as lower-cost maintenance, and the ability to

rapidly upgrade as new quantum technology matures. The

other schemes, (d) and (e), in Fig. 21 can be considered as

space-based high-complexity schemes, since they involve the

deployment of quantum technology at the satellite. In scheme

(d) (again already demonstrated for DV states [67]) the source

of quantum states is located on board the satellite, with both

ground stations acting as receivers. In scheme (e) the two

ground stations transmit quantum states to the satellite. In the

satellite, quantum measurements are performed on the received

states and the classical measurement results are communicated

back to the ground stations. Scheme (e) can be utilized in

support of entanglement swapping and measurement-device-

independent protocols so as to implement QKD between the

two ground stations.

Let us reconsider the quantum communication architectures

of Fig. 21 for CV entanglement distribution and for CV-QKD

implementation. We assume that the source of quantum com-

munication in the transmitter(s) is a two-mode entangled state

associated with modes 1 and 2. In the scheme (a) (the scheme

(b)) of Fig. 21, a two-mode entangled state is generated by

Alice at the ground station (satellite) with one mode, mode 1,

kept by Alice, while the other mode, mode 2, is transmit-

ted to Bob located at the satellite (ground station) over the

uplink (downlink). In the scheme (c) of Fig. 21, a two-mode

entangled state is generated by Alice at the ground station

transmitter with one mode, mode 1, held at the ground sta-

tion transmitter and the other mode, mode 2, transmitted over

the uplink to the relay satellite. The received mode is then

reflected in the satellite and transmitted through the downlink

to Bob at the ground station receiver. In the scheme (d) of

Fig. 21, a two-mode entangled state is generated on board of

the satellite with both modes then sent over the separate down-

links to Alice and Bob located at the separate ground stations.

In the scheme (e) of Fig. 21, Alice and Bob are located in

the separate ground stations, both initially possessing a two-

mode entangled state. One mode of each entangled state is

kept by a ground station transmitter and the second mode of

each state is transmitted over the uplink to the relay satellite,

in which on-board entanglement swapping is performed on

the arriving modes. To elaborate a little further, entanglement

swapping [7] is a standard quantum protocol conceived for

establishing entanglement between distant quantum systems

that have never interacted [159]–[162]. It is the central mech-

anism of quantum repeaters [31], enabling the distribution

of entanglement over large distances. In the scheme (e) of

Fig. 21, the received modes are swapped at the satellite via a

CV Bell measurement [82], where the two modes are mixed

through a balanced beam splitter. Explicitly, the q̂ quadrature

of one of the output modes of the beam splitter and the p̂

quadrature of the output mode are separately measured by

two homodyne detectors. This process is sometimes described

by saying that the two output modes of the beam splitter are

conjugately homodyned [82]. The classical outcome of the

Fig. 22. Entanglement swapping between two ground stations via satellite:
The two-mode entangled state of modes 1 and 2 (modes 3 and 4) is initially
owned by Alice (Bob). Mode 1 (mode 4) is kept by Alice (Bob) and mode 2
(mode 3) is then transmitted over the uplink to the relay satellite. The received
modes 2′′ and 3′′ (where the ′′ indicates that the modes have now incurred
losses) are mixed through a balanced beam splitter and the q̂ quadrature of
one of the output modes and the p̂ quadrature of the other one are measured
by two homodyne detectors. The classical outcome of the Bell measurement
is then communicated to Alice and Bob. As a result, there would exist an
entangled state shared between modes 1 and 4.

Bell measurement is then communicated to Alice and Bob

so that they can optimally displace their modes, according to

the measurement outcome, in order to maximize the resultant

entanglement shared between the ground stations. This entan-

glement swapping scheme between two ground stations via

satellite is shown more explicitly in Fig. 22.

As a result of the entanglement distribution in each quan-

tum communication scheme of Fig. 21, there would exist an

entangled state shared between Alice and Bob. Once the entan-

gled states have been shared between the stations, for each

scheme of Fig. 21, Alice and Bob are able to invoke CV-

QKD protocols in the EB scheme by applying homodyne or

heterodyne detection of their own modes. The level of entan-

glement produced by the quantum communication schemes

considered here as well as the quantum key rates of the EB CV-

QKD protocols in these schemes have recently been analyzed

in [105]–[109].

In the schemes (a), (b), and (c) of Fig. 21 the entan-

gled source originates from one of the trusted parties (Alice).

However, in the scheme (d) of Fig. 21 the entangled source

originates from the satellite, which in some circumstances

may be controlled by the eavesdropper, Eve. In [136], it has

been shown that in the context of the EB CV-QKD protocols

Alice and Bob can still generate a secure key, even when Eve

controls the entanglement source.

B. Measurement-Device-Independent QKD Protocols

In the scheme (e) of Fig. 21 the entangled source orig-

inates from both trusted parties (Alice and Bob), however,

the Bell measurement at the satellite may be controlled by
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Eve. In [163], it has been demonstrated that in CV-QKD pro-

tocols the secret key to be shared between the two trusted

parties can be generated by the measurement of an untrusted

intermediate relay. In measurement-device-independent (MDI)

protocols of QKD [163]–[165], Alice and Bob are not con-

nected by direct links, and an intermediate relay is used for

completing the communication link. In MDI protocols the

measurement device is the intermediate relay, whose opera-

tion may be controlled by an adversary. Fig. 22 is in fact one

example of a scenario over which a MDI protocol may be

implemented.

The security of CV-MDI protocols is usually analysed using

EB schemes that invoke CV entanglement swapping at the

relay similar to that shown in Fig. 22 Although CV-MDI

protocols are practically implemented in a PM scheme (see

below).

In the EB equivalent of the Gaussian MDI-QKD protocols, a

pair of TMSV states associated with the quadrature variance of

v = cosh (2r) (where r is the two-mode squeezing), is initially

owned by Alice and Bob. One mode of each entangled state is

held by Alice and Bob, while the second mode of each state is

transmitted to the intermediate relay over the insecure channel.

The received modes are swapped via a CV Bell measurement

at the intermediate relay. The swapping process continues by

the relay communicating the Bell measurement result through

a classical public channel to Alice and Bob. After receiv-

ing the Bell measurement outcome, Bob displaces his mode,

while Alice keeps her mode unchanged. Then Alice and Bob

measure their modes by homodyne (or heterodyne) detectors

to create correlated data. After the establishment of a suffi-

ciently large amount of correlated data, Alice and Bob proceed

with the classical post-processing over an authenticated public

channel to create a secret key.

In the EB scheme of the Gaussian MDI-QKD protocols, if

Alice and Bob apply a homodyne detection of their modes, the

scheme becomes equivalent to the PM scheme, in which Alice

and Bob prepare squeezed states, and if Alice and Bob apply

a heterodyne detection of their modes, the scheme becomes

equivalent to the PM scheme in which Alice and Bob prepare

coherent states. We discus these PM schemes next.

The MDI implementation of Gaussian CV-QKD protocols

in the PM scheme depends on whether the Gaussian resource

is a squeezed or a coherent state. If a squeezed state, Alice

prepares her mode in a squeezed state with the quadrature

variance v = exp(2rs), where rs is the single-mode squeez-

ing. Which one of the two quadratures is to be squeezed is

based on a randomly generated bit. The chosen quadrature

is then modulated by a random Gaussian-distributed variable

with zero mean and variance vm conditioned on vm = v−1/v .

The same procedure is applied independently at Bob’s side.

If the Gaussian resource is a coherent state, Alice prepares

her coherent-state mode with each quadrature independently

modulated by a random Gaussian-distributed variable having

zero mean and variance of v ′m . Likewise Bob.

Following transmission to the satellite of the modes belong

to Alice and Bob, and irrespective of the Gaussian resource

used, the satellite makes a CV Bell measurement on each mode

pair, announcing the results. Alice and Bob undertake some

modification of their data based on these results and undergo

some classical post-processing to end up with a shared key.

More details of this process can be found in [108].

Note the modulation variance v ′m (in the protocol

using coherent states) can reach very high values, e.g.,

v ′m = 60 [163]. With the use of squeezed states, however,

achieving high values of squeezing reamins experimentally

challenging. As such, quadrature variance v and of the modu-

lation variance vm are limited in the range of values attained.

Note that v = 5.05 is equivalent to the two-mode squeezing

of 10 dB [166]. Note also that vacuum squeezing at 15 dB is

currently the highest obtainable in any experiment [167].

Previous contributions on MDI-QKD protocols have mainly

been focussed on fixed-attenuation channels [30], [163],

[168]–[177]. In [108], a MDI implementation has been inves-

tigated in order to establish Gaussian CV-QKD protocols

between two ground stations, where the communication occurs

between the ground stations via a LEO satellite over a pair

of independent atmospheric channels. In this CV-MDI pro-

tocol the measurement device is the satellite itself, which

can be controlled by an adversary. In [108], it has been

demonstrated that while the CV-MDI protocol is only fea-

sible for low-loss fixed-attenuation channels, the protocol is

capable of achieving a beneficial secure key rate even for

transmission over high-loss atmospheric channels. Note that

in MDI-QKD the devices of Alice and Bob have to be

trusted [30], [163], [168]–[177]. Nonetheless, it has recently

been shown that QKD is possible even when the device of

one of the parties is untrusted [178]–[180]. The security of

this one-sided device-independent protocol using CV quan-

tum states has recently been investigated both theoretically

and experimentally [181], [182].

We note that MDI protocols represent a step closer to full

device-independent protocols. These latter protocols are based

on Bell violation measurements at the receivers, and repre-

sent the most robust form of QKD (the form that requires

the least number of assumptions). Although some work has

been carried out in relation to CV states in device independent

QKD (e.g., [183]), practical progress is limited due to the very

low key rates expected. CV MDI-QKD protocols, with their

reduced assumptions on how the measurement device must

operate, currently represent the most robust form of QKD that

still lead to reasonable key rates. The MDI protocols remain

unconditionally secure in their generation of keys - the best

an adversary in charge of the measurement device can do is

drive the key rate to zero (e.g., by broadcasting false Bell

measurement results).

C. Entanglement Determination and Quantum Key Rate

Computation

The evolution of quantum states as they prorogate through

atmospheric fading channels can be considered in two differ-

ent scenarios. In the first scenario, the transmission coefficient

η of the atmospheric fading channel is unknown, while in

the second scenario it is known. In this latter scenario, it is

assumed that the transmission coefficient can be measured in

real time at the receiver.
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1) Scenario 1 (The Transmission Coefficient of the Fading

Channel Is Unknown): Here, we consider the distribution of

a two-mode entangled state over satellite-based atmospheric

fading channels. In fact, we assume that the transmitter ini-

tially possesses a two-mode (mode 1 and mode 2) entangled

state ρ̂, with one (or more) of the modes transmitted to the

receiving station(s) through atmospheric fading channels. This

leads to two operational settings.

Single-mode transfer: In this setting we assume that mode 1

of ρ̂ remains at the ground station (satellite), while mode 2 of

ρ̂ is transmitted to the satellite (ground station) over the fading

uplink (downlink) characterized by the probability distribution

p(η) and the maximum transmission coefficient of η0. The

density operator of the two-mode state at the ground station

and satellite for each realization of the transmission coefficient

η is given by ρ̂′(η). Since η is a random variable, the elements

of the total density operator of the resultant mixed state ρ̂′t are

calculated by averaging the elements of the density operator

ρ̂′(η) over all possible transmission coefficients of the fading

channel, giving the ensemble-averaged state of [107]

ρ̂′t =
∫ η0

0
p(η)ρ̂′(η) dη. (42)

Now, let us consider the initial two-mode entangled state

ρ̂ at the transmitter being a Gaussian state [102], [103],

[105], [106], [184]. In this case the resultant ensemble-

averaged state ρ̂′t is a non-Gaussian mixture of the Gaussian

states ρ′(η) obtained for each realization of η. Since the

resultant ensemble-averaged state shared by the ground sta-

tion and the satellite is a non-Gaussian state, it cannot

be completely described by its first and second moments.

Therefore, the final entanglement computed based on the

covariance matrix of the resultant ensemble-averaged state

will represent only the Gaussian entanglement between the

ground station and the satellite, but not the total distributed

entanglement [102], [103], [105], [184]. In order to calculate

the total shared entanglement between the stations, the entan-

glement has to be computed based on the density operator of

the resultant ensemble-averaged state [107].

Note that if we use the shared entanglement created for sub-

sequent use in QKD, i.e., a EB CV-QKD protocols operating

over atmospheric fading channels,20 then the same concept

(use of ensemble averaged states) is invoked when the quan-

tum key rate is calculated. Note that when the quantum key

rate is in fact calculated based on the covariance matrix of the

resultant ensemble-averaged state ρ̂′t , the key rate computed is

only related to the Gaussian component of ρ̂′t [106].

Two-mode transfer: In this setting we assume that the satel-

lite initially possesses a two-mode entangled state ρ̂, with

mode 1 transmitted to ground station 1 over a fading down-

link obeying the probability distribution of p1(η1) and having

the maximum transmission coefficient of η01, while mode 2 is

transmitted to ground station 2 over a different fading down-

link characterized by the probability distribution p2(η2) and

20Note that in [185], a fast-fading channel has been considered where the
users are only able to estimate the probability distribution of the channel’s
transmission coefficient but not its instantaneous values, while the eaves-
dropper has full control of the fast-fading channel, so that she chooses the
instantaneous transmission coefficient of the channel.

having the maximum transmission coefficient of η02. Here,

the two fading downlinks are assumed to be independent.

The density operator of the two-mode state at the ground

stations for each realization of the transmission coefficients

η1 and η2 is given by ρ̂′(η1, η2). The elements of the total

density operator of the resultant mixed state ρ̂′t are cal-

culated by averaging the elements of the density operator

ρ̂′(η1, η2) over all possible transmission coefficients of the

two separate fading channels, giving the ensemble-averaged

state of [107]

ρ̂′t =
∫ η01

0

∫ η02

0
p1(η1)p2(η2)ρ̂

′(η1, η2) dη1dη2. (43)

2) Scenario 2 (The Transmission Coefficient of the Fading

Channel Can Be Measured): Let us now assume a modified

scenario, in which the variable transmission coefficient of the

atmospheric fading channel is measured with the aid of a sep-

arate coherent signal. For example, when a local oscillator

in a polarized mode orthogonal to the signal is sent through

the channel. Although this increases the complexity of the

system, the grade of entanglement (and hence the quantum

key rate of the EB CV-QKD protocols implemented based

on this entanglement) generated between the stations will be

increased.

When considering this scenario in the single-mode transfer

setting where the transmission coefficient η is measured at

the receiving station, the final entanglement can be calculated

as [107]

E =

∫ η0

0
p(η)E

[

ρ′(η)
]

dη, (44)

where E [ρ′(η)] is the grade of entanglement of a state received

through the channel of transmission coefficient η.

In this scenario, when the initial two-mode entangled state

ρ̂ at the transmitter is a Gaussian state, the mixed states ρ′(η)
collected at the receiver during each transmission coefficient

window remain Gaussian, because within each (small) fad-

ing bin we can assume that the transmission coefficient is

constant and therefore the states during that particular bin

remain Gaussian. In this case, the grade of entanglement of

the mixed Gaussian state ρ′(η), i.e., E [ρ′(η)] can be calculated

based on the covariance matrix of ρ′(η), which results in E of

Eq. (44) representing the total entanglement shared between

the stations [107].

Considering this scenario in the EB CV-QKD protocols

communicating over atmospheric fading channels, which are

implemented based on the shared entangled states between

the stations, the same concept is true when the quantum

key rate is calculated. In fact, due to the relatively long

coherence time of the atmospheric channel, it may be pos-

sible to devise a scheme, in which quantum key rates

are derived for each realization of the fading (each fad-

ing bin realized), and summed [107]–[109], [186]. Indeed,

the quantum key rate K [ρ′(η)] resulting from the mixed

Gaussian state ρ′(η) can be calculated based on the covari-

ance matrix of ρ′(η), and then the total key rate shared

between the stations is calculated by K =
∫ η0
0 p(η)K [ρ′(η)]

dη [107]–[109].
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Similarly, considering this scenario in the two-mode trans-

fer setting, where the transmission coefficients η1 and η2 are

measured at the two receiving stations, the final grade of

entanglement can be calculated as [107]

E =

∫ η01

0

∫ η02

0
p1(η1)p2(η2)E [ρ̂′(η1, η2)] dη1dη2, (45)

where E [ρ̂′(η1, η2)] is the entanglement of a state that has

traversed two channels having the transmission coefficients of

η1 and η2 [107]–[109].

D. Enhancement of Quantum Communication Performance

Satellite-based communication channels tend to suffer from

high uplink losses on the order of 25-30 dB (and beyond)

for a LEO satellite receiver [40], [52], [145], while single

downlink channels are anticipated to have losses of 5-10 dB

for a LEO satellite transmitter [40], [52], [145]. Under such

high losses, entanglement distribution and QKD via satellite

will remain a fruitless endeavor without the beneficial inter-

vention of the post-selection strategy [102] and entanglement

distillation techniques [184] detailed below.

1) Post-Selection: Although atmospheric fading degrades

both the entanglement and the quantum key rate, its

effects may be mitigated. Post-selection of high transmission-

coefficient windows, as introduced in [102] for the case of a

single point-to-point fading channel, is capable of improving

both the entanglement and the quantum key rate. To elaborate a

little further, in the post-selection strategy, a subset of the chan-

nel transmittance distribution, namely that associated with the

high transmission coefficient, is selected to contribute to the

resultant post-selected state and to the post-selected key rate.

To elaborate on the post-selection strategy, in addition to

the quantum states, coherent (classical) light pulses are trans-

mitted through the channel in order to estimate the channel’s

transmission coefficient η at the receiver. The received quan-

tum state is either retained or discarded, conditioned on the

channel’s transmission coefficient being higher or lower than

the post-selection threshold ηth . Although this post-selection

strategy can be invoked for enhancing the grade of entangle-

ment and the quantum key rate between the transmitter and

receiver, estimation of the channel’s transmission coefficient

will impose additional complexity on both the transmitter and

receiver. The operation of this form of post-selection in the

scheme (c) of Fig. 21 has been invoked in [105] for enhancing

the grade of Gaussian entanglement and in [106] for increasing

the quantum key rates between the ground stations.

2) Entanglement Distillation: The other strategy, which

can be used in order to enhance the grade of entanglement

between the transmitter and receiver is entanglement distilla-

tion that is based on quantum measurement techniques without

relying on channel estimation. Entanglement distillation rep-

resents the protocol of extracting a subset of states with a

higher degree of entanglement from an ensemble of entangled

states [187]. In fact, entanglement distillation may be viewed

as a purifying protocol that selects highly entangled pure states

from a set of entangled states that have become mixed as

a result of imperfect transmission [188]–[191]. It has been

shown that if the entangled states are Gaussian, entanglement

distillation cannot be performed using only Gaussian opera-

tions carried out by linear optical components, such as beam

splitters and phase shifters, homodyne detection and classi-

cal communication [192]–[194]. However, when the Gaussian

entangled states are transmitted through a fading channel,

the state at the output of the channel is a non-Gaussian

mixed state (a non-Gaussian mixture of Gaussian states), and

therefore the aforementioned no-go theorem does not apply.

In [184], a method has been proposed for distilling entangle-

ment from (initially) Gaussian entangled states received over a

single point-to-point fading channel. This is achieved by car-

rying out a weak measurement (based on a beam splitter and

a homodyne detector) applied to the received non-Gaussian

mixed state. The entanglement distillation is implemented at

the receiver by extracting a small portion of the received

mixed state using a tap beam splitter. A single quadrature

(for instance, the q̂ quadrature) is then measured by applying

homodyne detection to the tapped beam. If the measurement

outcome is above the threshold value qth , then the remaining

state is retained, otherwise it is discarded. The operation of this

form of entanglement distillation in the scheme (c) of Fig. 21

has been invoked in [105] for enhancing the Gaussian entan-

glement between the ground stations (which consequently

leads to an improvement in the quantum key rates of the EB

CV-QKD protocols).

Note that when entangled states are conveyed over a fading

channel, both the above-mentioned post-selection and entan-

glement distillation strategies act as “Gaussification” methods

in the sense that the resultant conditioned states approach a

Gaussian form due to the enhanced concentration of low-loss

states in the final ensemble-averaged state. Note also that using

the above-mentioned post-selection and entanglement distil-

lation strategies, the entanglement established between the

transmitter and receiver is only probabilistically increased.

Another entanglement distillation technique is based on

applying an initial non-Gaussian operation to the Gaussian

entangled states (that again increases the entanglement proba-

bilistically), which is followed by a Gaussification step that

iteratively drives the output non-Gaussian state towards a

Gaussian state. Non-deterministic noiseless linear amplifica-

tion has been identified as a method of distilling Gaussian

entanglement [196] and [195], [197]–[203]. It has been shown

that the non-deterministic noiseless linear amplification is

capable of distilling improved CV entanglement [196], [199],

[200] and enhancing CV-QKD performance [201]–[203], when

applied after the lossy channel to the quantum states received.

The non-Gaussian operations which result in the generation

of non-Gaussian entangled states will be discussed in detail in

the next section.

VII. NON-GAUSSIAN CV QUANTUM COMMUNICATION

OVER ATMOSPHERIC CHANNELS

In the CV domain, previous efforts invested in entan-

glement distribution and QKD over atmospheric channels

have been predominately focussed on Gaussian states [16],

[98], [102], [103], [105], [106], [108], [110], [111].

Although Gaussian quantum states are well understood
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both from a theoretical and from an experimental

perspective [86], [87], [114], the employment of CV

non-Gaussian quantum states21 for quantum communication

has also garnered interest [204]–[224]. Non-Gaussian quantum

states are valuable resource for a range of protocols, including

teleportation [204]–[208], [212]–[214], cloning [222], [223]

and CV-QKD protocols [219]–[221], [224]. For two impor-

tant reasons, entangled non-Gaussian states are particularly

interesting in the context of quantum communication via

satellite. The first of these reasons is that the distillation of

Gaussian entanglement is impossible using only Gaussian

operations [192]–[194]. However, mixed non-Gaussian states

can undergo entanglement distillation without any addi-

tional requirements. The second reason is that, relative to

Gaussian entanglement, non-Gaussian entanglement can be

shown in some circumstances to be more robust against

decoherence [212], [217], [218].

A. Non-Gaussian Entangled States

CV non-Gaussian states are mostly generated by applying

non-Gaussian operations, such as photon subtraction [204],

[205], [207]–[210], [213], [214], photon addition [206], [207],

[209], [211], [214] and photon replacement [212], [214] to

incoming Gaussian states. We discuss here non-Gaussian

entangled states which are created probabilistically by

applying non-Gaussian operations to (i.e., at the receiver)

Gaussian TMSV states. Note that a non-Gaussian operation

can be applied to either a single mode, or to both modes,

of the incoming Gaussian entangled state. Also note the

non-Gaussian operation can be applied to the incoming mode

at the sender (i.e., incoming from the local TMSV production

site), or at the receiver side (after propagation through the

atmosphere). Unless otherwise stated, we will consider the

former process in the following.

For the generation of an entangled photon-subtracted

squeezed (PSS) state [204], [205], [207]–[210], [213], [214],

each mode of an incoming TMSV state interacts with a vac-

uum mode in a beam splitter. One of the outputs of each

beam splitter feeds a photon number resolving detector. When

both detectors simultaneously register k photons, which are

considered to be non-Gaussian measurements, a pure non-

Gaussian state is heralded with a probability of 0 < Psb < 1.

This photon-subtraction operation is shown in Fig. 23(a) for

k = 1. A PSS state can also be generated by applying the pho-

ton subtraction technique described above to a single mode

of the TMSV state [214]. The generation of non-Gaussian

states via photon subtraction as described above has been

experimentally demonstrated in [225]–[227]. Note that in the

photon-subtraction operation, other types of photon detectors

such as on/off photon detectors (which only distinguish the

presence and absence of photons, and are considered a non-

Gaussian measurement) can also be used for generating a

PSS state from a TMSV state [205], [208]. In this case the

non-Gaussian output state is a mixed state.

21Note that only pure states having a positive Wigner function are Gaussian
states. However, the Wigner function of non-Gaussian pure states takes on
negative values.

An entangled photon-added squeezed (PAS) state [206],

[207], [209], [211], [214] is generated by adding a single pho-

ton to each mode of a TMSV state. This single-photon addition

is performed at a beam splitter, as shown in Fig. 23(b), with

one of the outputs of each beam splitter being detected by

an on/off photon detector. A pure non-Gaussian state is then

generated (with a probability of 0< Pab <1) when a vacuum

state is registered in both detectors simultaneously. Note that

the final creation probability of a PAS state is obtained by

multiplying Pab by the probability of creating the two addi-

tional photons required. A PAS state can also be generated by

applying the photon addition technique described above to a

single mode of the TMSV state [214]. Note that the addition

of single photons to coherent states and to thermal states of

light has been experimentally realized in [228] and [229].

By contrast, an entangled photon-replaced squeezed (PRS)

state [212], [214] is generated according to Fig. 23(c), where

each mode of a TMSV state interacts with a single photon

in a beam splitter, with one of the outputs of each beam

splitter being detected by a photon number resolving detector.

When both detectors register a single photon simultaneously,

a pure non-Gaussian state is heralded with a probability of

0< Prb <1. The final creation probability of a PRS state is

obtained by multiplying Prb by the probability of creating the

two additional photons required. A PRS state can also be gen-

erated by applying the photon replacement process described

above to a single mode of the TMSV state [214].

B. Evolution of Non-Gaussian Entangled States Over a

Lossy Channel

Unlike Gaussian states, the evolution of non-Gaussian

states cannot be analysed solely through the covariance

matrix. Previous contributions have analysed the evolution

of non-Gaussian states for transmission over fixed-attenuation

channels relying on the so-called Master equation approach

of [215], the characteristic function approach of [212] or

the Kraus operator approach of [217]. Here we discuss

the general approach of Kraus representation [230] of the

channel in order to directly analyze the evolution of the

entangled states (Gaussian or non-Gaussian) through the chan-

nel. Considering a quantum state associated with the density

operator ρ̂in as the input of a trace-preserving22 completely

positive channel, the output density operator of the channel

can be described in an operator-sum representation of the form

ρ̂out =
∑∞

ℓ=0Gℓρ̂in G†
ℓ , where the Kraus operators Gℓ sat-

isfy
∑∞

ℓ=0GℓG
†
ℓ = I , with I being the identity operator.

In [230], the Kraus operators of a wide range of channels

including a fixed-attenuation channel subject to vacuum noise

(i.e., Vn = 1 in Fig. 10) are given. In [217], the Kraus opera-

tors of a fixed-attenuation channel subject to vacuum noise but

with additional Gaussian noise is given. The results of [230]

have been generalized to a fixed-attenuation channel subject

to thermal noise (i.e., Vn > 1 in Fig. 10) in [132].

22In a trace-preserving channel, the trace of the density operator is
preserved, which means the trace of the output density operator of the channel
remains one.
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Fig. 23. Implementation of non-Gaussian operations on the Gaussian TMSV
state. (a) Photon subtraction: each mode of the input TMSV state interacts
with a vacuum mode in a beam splitter, with one output of the each beam
splitter feeding a photon detector. If the two detectors simultaneously detect
a single photon, a PSS state is heralded on the non-measured outputs. (b)
Photon addition: each mode of the input TMSV state interacts with a single
photon in a beam splitter, with one output of the each beam splitter feeding
a photon detector. If the two detectors simultaneously detect vacuum state, a
PAS state is heralded on the non-measured outputs. (c) Photon replacement:
each mode of the input TMSV state interacts with a single photon in a beam
splitter, with one output of the each beam splitter feeding a photon detector. If
the two detectors simultaneously detect single photons, a PRS state is heralded
on the non-measured outputs.

C. Entanglement Determination and Quantum Key Rate

Computation

Following the evolution of pure non-Gaussian states over

the lossy channel(s), the quantum state of the channel output

is a non-Gaussian mixed state. In general it is not possible

to analytically determine the total grade of entanglement of

the mixed non-Gaussian states after transmission over a lossy

channel. Since the grade of entanglement is determined by

the output density operator ρ̂out , which possesses an infi-

nite number of elements, a numerical method is required for

approximating the matrix ρ̂out by its truncated-dimensional

version, as discussed in [107], [109], [132], and [205] whilst

ensuring that the trace of the truncated matrix is close to 1.

Given the non-deterministic nature of the non-Gaussian

operations, in the context of non-Gaussian entanglement distri-

bution, there are two key performance indicators, namely the

grade of entanglement E between two stations following the

transmission of a pulse through the lossy channel(s), and the

entanglement-generation rate RE , where we have RE = Pc E ,

with Pc being the creation probability of the initial non-

Gaussian state. The evolution of a wide range of non-Gaussian

entangled states in both single-mode and two-mode transfer

over atmospheric fading channels has been investigated both

when the transmission coefficient of the atmospheric fading

channel is unknown and when it is estimated in real time [107].

The work of [107] considered operational scenarios where the

non-Gaussian entangled states transmitted through the atmo-

spheric channel are created “just-in-time” via non-Gaussian

operations applied to the Gaussian entangled input states that

would otherwise be transmitted directly over the communi-

cation channel. In this scenario transmitting the incoming

Gaussian state directly over the atmospheric channel would

be the best option in terms of maximizing the entanglement-

generation rate. However, if the transmission rates of all the

states through the channel could be equalized for example with

the aid of quantum memory (see [107] for more details), some

non-Gaussian states lead to enhanced entanglement transfer

relative to that obtained by Gaussian state transfer.

The performance of CV-QKD protocols has been analysed

in [109] for transmission over atmospheric fading channels,

where the source is constituted by PSS states in the con-

text of EB CV-QKD protocols. In [109], one mode of the

PSS state remains at the ground station (satellite), while the

other photon-subtracted mode is transmitted to the satellite

(ground station) over the fading uplink (downlink) channel

characterized by the probability distribution p(η) and max-

imum transmission coefficient of η0. When the transmission

coefficient of the atmospheric channel can be measured in real

time, after acquiring each realization of η, the key rate K(η) is

calculated based on the covariance matrix of the mixed non-

Gaussian state at the output of the channel. The final key rate

is then computed as K = Pc

∫ η0
0 K (η)p(η) dη in units of bits

per pulse, with Pc being the creation probability of the initial

non-Gaussian entangled state. The resultant key rate repre-

sents a lower bound on the actual key rate of the CV-QKD

protocol. However, to determine the actual resultant key rates

(not just its lower bounds), K(η) must be computed based on

the density operator of the mixed non-Gaussian output state.

In [107] and [109] the non-Gaussian operations are first

applied to the initial Gaussian states, with the resultant non-

Gaussian states being transmitted through the atmospheric fad-

ing channel. An alternative approach would be to transmit the



HOSSEINIDEHAJ et al.: SATELLITE-BASED CV QUANTUM COMMUNICATIONS: STATE-OF-THE-ART AND PREDICTIVE OUTLOOK 911

initial Gaussian states through the atmospheric channel, and

then apply the non-Gaussian operations after the atmospheric

channel to the quantum states received. In [212], the distil-

lation of CV entanglement using a coherent superposition-

based non-Gaussian operation has been studied, where the

non-Gaussian operation is the superposition of the photon

subtraction and of the photon addition operations, and where

the non-Gaussian operation is applied either before or after a

fixed-attenuation channel.

VIII. COMPARISON WITH DISCRETE-VARIABLE

TECHNOLOGIES

The family of DV systems invoked for satellite-based quan-

tum communications constitutes an alternative technology,

which has been deployed in Micius [66]–[68]. In space-based

deployment, a range of pragmatic issues comes into play when

considering the pros and cons of DV vs. CV implementations.

Perhaps the strongest argument in favour of DV systems in

the space-based context is that photon losses have a less grave

impact on quantum information processing in DV systems. In

CV systems the photon losses in the channel introduce vacuum

noise, leading to a reduction in the correlation between Alice

and Bob’s data. By contrast, in DV systems, photon losses

reduce the communication efficiency, but they do not trigger a

false single-photon detection event. A photon is either lost in

the channel, in which case Bob does not register anything, or

it is simply detected at Bob’s detector. In high-loss scenarios,

this effect can lead to advantages for DV systems. However,

this benefit may by outweighed by other considerations, as

discussed briefly below. More details on satellite-based DV

quantum communication can be found elsewhere, for example

in [40].

The performance of DV-QKD [231] is limited both by

the difficulty of single-photon generation, as well as by

the expense of single-photon detectors. It is a challenge to

construct a true single-photon source owing to implementa-

tion challenges. Alternatively, single-photon sources can be

approximated using an attenuated laser (weak coherent state

pulses) [232], [233]. By contrast, CV-QKD systems rely

on low-cost implementations and are potentially capable of

supporting higher key rates than DV-QKD systems. Recall

that CV-QKD can be implemented by modulating both the

amplitude and phase quadratures of a coherent laser and

can be subsequently measured in the receivers using homo-

dyne detectors, which operate faster and more efficiently than

the single-photon detectors. Moreover, CV-QKD systems are

more compatible with standard telecommunication encoding,

transmission and detection techniques. All these advantages

potentially allow CV-QKD protocols to achieve higher secret

key rates than DV-QKD systems.

Furthermore, the single-photon detectors of DV systems

are very sensitive to background light sources. By contrast,

the homodyne detectors used for CV systems offer beneficial

robustness to background light. Indeed, an explicit advantage

of using a local oscillator is that it has an ‘automatic’ spectral-

domain filtering effect. Consequently, homodyne detectors

remain to a large extent unimpaired in daylight conditions

TABLE VI
COMPARISON OF DV-QKD AND CV-QKD

without the extra filtering that are needed by the single-photon

detectors [16]. Furthermore, in CV systems, a tapped compo-

nent of the local oscillator can be simply obtained and mea-

sured, thereby allowing for direct monitoring of atmospheric

fluctuations effects, such as beam wandering (which can then

be compensated for using adaptive optics [16], [98], [110]).

Both DV and CV-QKD systems have protocols which are

able to generate unconditional secure key [76]. However, the

performance of QKD systems can be evaluated in terms of the

generation “rate” of the final secure key. Due to the fact that

the impact of photon losses on QKD performance is different

for DV and CV systems (as discussed earlier), for low-loss

channels where CV-QKD is secure (i.e., generates positive key

rates), the key rate generated from CV-QKD can be higher

than the key rate from DV-QKD [163] (due to the use of

faster and more efficient transmission and detection technol-

ogy in CV-QKD systems). However, for high-loss (and noisy)

channels where CV-QKD is not secure (i.e., not able to gener-

ate positive key rates), DV-QKD can be secure, and generate

positive key rates. Thus, the secure transmission range (or the

maximum transmission distance) of DV-QKD systems can be

higher than CV-QKD systems.

Table VI summarizes the pros and cons of DV-QKD and

CV-QKD. Nonetheless, the issue of whether DV or CV

systems should be deployed as the quantum information carrier

in space-based quantum communications remains very much

an open issue at the time of writing. Ultimately, it could

well be that hybrid DV+CV architectures, accommodating

time-variant atmospheric conditions, turn out to be the most

beneficial in many circumstances. The employment of such

hybrid architectures has been extensively studied for example

in [234].

IX. FUTURE DIRECTIONS

Quantum communication via satellite is in its infancy.

Building on the early work and verification studies (both

experimental and theoretical) of many researchers, e.g., [16],

[32]–[69], [78], [79], [93]–[112], [235], and [236] the pioneer-

ing experimental result of the Micius [66]–[68] collaboration

has now provided us with the first glimpse of what is truly

achievable via space-based platforms. However, there remains

much to do before quantum communications via satellites can
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be considered mainstream. This is especially so in the CV

quantum domain, where no space-based deployments have

yet been achieved, despite the numerous theoretical studies,

e.g., [16] and [98]–[111]. We briefly mention here some of

the research topics within space-based CV quantum com-

munications that we consider of particular interest to any

multi-disciplinary engineering community.

A. Channel Transmissivity Measurements

The Micius [66]–[68] data provides us with our first real

insight into the channel conditions experienced by quantum

states, as they traverse through the turbulent atmosphere, to

and from Earth. The measured photonic losses in the down-

link [66], [67] and in the uplink [68] are now available (the

losses in the latter case were a minimum of 41 dB). Leveraging

this data for better understanding the channel conditions expe-

rienced by CV states as they travel to and from Earth would

be an insightful, but costly endeavour. As discussed earlier

in Section VIII, the loss of photons in the CV context fun-

damentally affects any subsequent information processing, as

opposed to the DV case, where photons not received can be

simply ignored. Ultimately, the study of how the CV states are

affected by the atmosphere reduces to a determination of the

statistical distribution of the channel transmissivity. Detailed

knowledge of this distribution has wide ranging implications

for studies pertaining to non-classical signatures of CV states

traversing through atmospheric channels [104], as well as for a

host of CV-based applications. The latter outcome is due to the

fact that many applications are very sensitive to the channel’s

transmissivity [105]–[109]. As discussed previously, beyond

the dominant effects of beam wandering and beam broaden-

ing, other more subtle effects induced by the atmosphere can

play a non-negligible role. These effects include beam defor-

mation, attenuation, absorption and scattering. Sophisticated

theoretical studies of these effects are now becoming avail-

able, and in general these models are found to be consistent

with terrestrial experiments carried out over a wide range

of turbulence conditions [101], [237], [238]. Experimental

confirmations of existing turbulence models in the realm of

Earth-to-satellite (and vice versa) channels would be very

important. Of particular importance would be a robust valida-

tion of the beam-wandering models used for the transmissivity

statistics in the Earth-to satellite channels [100]–[102], and

the validation of the beam-broadening models expected to

dominate the satellite-to-Earth channels [57].

B. Error Reconciliation

The reconciliation phase of any QKD protocol is perhaps

the area of quantum communications most closely associ-

ated with classical communications. In the DV scenario, long

LDPC codes can be used to correct transmission errors.

For scenarios, where DV quantum measurements are mapped

directly to binary outcomes, the transmission of bits via a

classical binary symmetric channel can be adopted as the

underlying model. A range of high-performance LDPC codes

which approach reconciliation factors close to 1 in the large

key length limit are known for such channels [239]–[241].

However, in the CV setting the extraction of binary infor-

mation is substantially more involved. Currently, there are

two main techniques that are widely adopted in this regard,

namely, slice reconciliation [20], [242], and multi-dimensional

reconciliation [24], [243]. For the low signal to noise ratios

(SNRs) routinely anticipated for satellite communications, the

multi-dimensional reconciliation technique is likely to be more

appropriate. In this context, multi-dimensional reconciliation

via multi-edge LDPC codes is considered by many as the most

appropriate path due to the high performance of such codes

at low SNRs [24].

Nonetheless, numerous open research issues remain.

Perhaps the most important of these is constituted by the

finite key effects. Much of the work in formally determin-

ing the security of a key within QKD systems assumes having

an infinite key length. However, in reality, this assumption is

never satisfied and the consideration of the finite-length key

effects must be analysed. This is an issue that affects both

the DV [244] and CV security analyses [181], [245]–[248].

This problem is of particular concern for space-based QKD

due to the short transit times of LEO satellites. Hence, the

finite-length key processing invoked in the context of CV-QKD

conceived for satellites has to be considered. Naturally, this

analysis will be strongly dependent on the specific CV-QKD

protocol adopted. Finite-length key based analyses of standard

coherent state protocols [249], of MDI protocols [250], [251]

and of full device-independent protocols [252] follow quite

distinct paths.

Beyond the finite-length effects within the reconciliation

decoding phase, the construction of near-capacity adaptive-rate

LDPC codes for CV space-based implementations would be

useful. Again, these issues are particularly relevant to satellite-

based communication due to the time-variant properties of the

channel. For LEO satellites we can expect the SNR to exhibit

quite rapid variations versus time, as the satellite appears above

the horizon and disappears again. Furthermore, for a given set

of orbital parameters, we could anticipate the SNR’s evolu-

tion versus time to be reasonably predictable. Adaptive-rate

LDPC codes well suited for counteracting the SNR vs time

evolution should be constructed. The employment of punctur-

ing techniques [253] used for multi-edge LDPC codes appears

to be an appropriate pathway to achieving this [254]. These

studies are only in their early phases of development, hence

further research into the design of adaptive-rate codes as a

path to low-complexity CV-QKD via satellites is expected to

be fruitful. An important focus of such future studies should

be the maintenance of high reconciliation efficiencies over the

anticipated range of SNRs [255].

Finally, we note that in principle other codes beyond LDPC

codes could be used in the CV-QKD reconciliation phase.

Currently, however, limited work has been reported in this

area. Nonetheless, we do note some work on turbo codes [256]

applied to the CV domain, as reported in [257] (for use of such

codes in the DV domain see [258], [259]). Furthermore, polar

codes [260] have recently been invoked for CV-QKD in [261].

These contributions suggest that further performance compar-

isons using various error correction codes for the CV-QKD

reconciliation phase may become fruitful.
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C. CV Quantum Error Correction Codes

Of special importance for CV quantum communications

are the non-Gaussian operations that form the basis of quan-

tum error correction. Such operations are required due to the

no-go theorem, stipulating that Gaussian errors cannot be cor-

rected by purely Gaussian operations [262]. It is possible to

build a pathway from standard classical LDPC codes to qubit

error correction codes, and then to CV error correction codes.

Following on from the original CV error correction protocols

of [263]–[265], there are several examples of CV quantum

error correction codes appearing in [197] and [266]–[272].

However, in the context of space-based implementations there

is evidence to suggest that direct non-Gaussian measurement

at the receiver is likely to be the most fruitful pathway to CV

error correction - at least in the short term.

In Section VII-A we have discussed a host of non-Gaussian

operations in the form of photon subtraction and addition

techniques that were used to form our non-Gaussian states,

as seen in Fig. 23. Such operations can also be used for

producing CV entanglement distillation - a form of quan-

tum error correction for CV variables. Photon subtraction

and addition techniques are becoming mainstream in labora-

tories throughout the world and the imminent integration of

such techniques directly into future satellite communications

is expected. In QKD implementations though, a balance must

be struck between the relatively low probabilities of success

for the subtraction/addition operations required and the resul-

tant degradation of the key rates. More detailed studies of these

design options for space-based communications are warranted.

D. The Interface With Classical Terrestrial Networks

Although fundamentally a breakthrough, the birth of space-

based quantum communications can be seen from a more

pragmatic perspective - it will allow for the creation of the

global “Quantum Internet”. This new Internet will interconnect

a vast range of devices, from mobile devices all the way

through to the much anticipated quantum computers. These

devices will be able to transfer quantum information and

communicate with each other in an unconditionally secure

manner. Importantly, this new network will consist of not only

quantum communication channels but also of classical com-

munication channels. As such, consideration of how best to

accommodate integration of the quantum information received

via satellites into a wider integrated network will be required.

Currently, very little detailed thought has been given to this

ambitious enterprise, and therefore there is much opportunity

for high-impact future research in the context of the integrated

system-oriented vision of Fig. 1.

In the CV setting, perhaps the integration of CV quantum

information into the microwave setting is the most important

example. The implementation of quantum communication pro-

tocols in the optical frequency domain is usually preferred,

which is an explicit benefit of the negligible background

thermal radiation at optical frequencies, hence all of our dis-

cussions have been in this domain. However, the advent of

super-conducting microwave quantum circuits have led to an

increasing interest in the implementation of quantum com-

munication protocols in the microwave regime [129]–[131],

[273]–[279]. These interests are further fuelled by advances

in macro electro-optomechanical resonators that are capable

of coupling quantum information with the microwave-optical

interface [276], [278], [279]. With the advent of this tech-

nology, quantum information created via super-conducting

circuits may be readily upconverted to the optical regime for

direct transfer to an overhead satellite. The satellite could then

communicate that information optically to a second terrestrial

receiver with subsequent conversion back to the microwave

regime for storage, error correction or further information

processing. Such a scenario could well represent how future

quantum computers will share information globally through

the quantum Internet. We also note that it is even possible to

directly transmit quantum information via microwave carriers

to nearby wireless receivers [132]. The development of such

integration techniques for the quantum Internet is still in its

infancy.

X. CONCLUSION

We have discussed the recent research advances that are

most relevant to CV quantum communication via low-Earth-

orbit satellites. Recent experimental results gleaned from the

Micius satellite on a range of DV-based quantum commu-

nication protocols indicate that CV quantum communication

via large distances over the ether has become entirely plau-

sible. We have outlined many of the technical advances in

the field of CV quantum communication encompasses and

highlighted a range of technical challenges it faces. As com-

pared to the DV technology, CV systems bring with them the

compelling benefit of inherent compatibility with the state-of-

the-art optical technology. Explicitly, while DV sources and

detectors are difficult to implement and expensive, CV systems

can be easily implemented with the aid of off-the-shelf lasers

and homodyne (or heterodyne) detectors. Hence, the many

advantages of this intriguing technology warrant its experi-

mental deployment to make the vision of the perfectly secure

future quantum-communications scenario portrayed in Fig. 1

a reality.

Our hope is valued Colleague that you would join this

community-effort...
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Abstract—Adaptive optics (AO) has the potential to mitigate
the effect of atmospheric turbulence and improve the per-
formance of orbital angular momentum (OAM)-based optical
wireless communication (OAM-OWC) links. Here, we propose a
single-intensity-measurement phase retrieval algorithm (SPRA)-
based AO technique of compensating for the distortion of the
OAM beam. The only parameter required by the SPRA wave-
front sensor is the intensity of the probe beam in the Fourier
domain, which substantially simplifies the AO system. We first
derive an analytical expression to characterize the expansion
of probe beam in OAM-OWC links and then determine the
diameter constraints as the apriori information of the SPRA
required for guaranteeing a certain compensation performance.
The simulation results illustrate that the SPRA-AO approach can
indeed correct a distorted OAM beam both in a single-channel
scenario and in multiplexed OAM-OWC systems. The bit error
rate can be improved by orders of magnitude with the aid of
SPRA-AO compensation. Furthermore, we establish noise models
of AO-based OAM-OWC systems and analyze the robustness of
the SPRA-AO technique. In a nutshell, this paper provides new
insights for the applications of AO and forms the theoretical basis
of employing probe beams in OAM-OWC systems.
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I. INTRODUCTION

A
S the demand for data increases, there is keen interest

in increasing the transmission capacity in a range of

fields [1], [2]. High-capacity optical wireless communication

(OWC) is receiving increasing attention in various areas [3]–

[5] because of the substantial demands for data transmission.

Optical vortex beams carrying orbital angular momentum

(OAM) characterized by a particular helical phase structure of

exp(ilφ), have been introduced to meet the growing demand

for large-capacity OWC [1], [6], [7] where the OAM state

index l represents the number of 2π phase shifts across the

beam and φ is the azimuthal angle. The OAM beams having a

distinct l are orthogonal to each other, and the state index l is

an infinite integer [8]. Therefore, the OAM beams are capable

of substantially increasing the capacity of communication

systems by either encoding information as OAM beam states

or using OAM beams as information carriers for multiplexing

[9]–[11].

The atmospheric turbulence (AT) effects, which are caused

by random variations in temperature and convective motion

induced by the random variations of the air’s refractive in-

dex [12], constitute unavoidable impairments in OAM-aided

OWC systems. In practical scenarios the atmospheric tur-

bulence gives rise to phase distortion, which induces in-

termodal crosstalk among different states and degrades the

performance of OAM-aided communication systems [13],

[14]. Both experiments and simulations have verified that

adaptive optics (AO) efficiently mitigates the distortion of

OAM-OWC systems [15]. However, for OAM beams having

helical phase fronts, one of the challenges is to directly

detect the phase front using typical wave-front sensors due

to the associated phase singularity [16]. To circumvent this,

the phase retrieval algorithm (PRA)-based AO has gained

increasing attention [17]. The Gerchberg-Saxton algorithm

(GSA)-based phase correction method has been shown to

efficiently mitigate the turbulent aberration of OAM beams

both by simulations and experiments [18], [19]. Then, Fu

et al. [20] used a probing Gaussian beam and the GSA

for the pre-compensation of turbulence-infested OAM beams.

In 2018, Yin et al. [21] proposed the hybrid-input-output-

algorithm (HIOA) to compensate for the distortion of OAM

beams in OAM-OWC systems.
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TABLE I
COMPARISON OF THE PROPOSED SCHEME TO THE LITERATURE

Our paper [13]-2020 [4]-2019 [5]-2018 [20]-2017 [19]-2016 [13]-2015 [18]-2012 [33]-2010

Optical Wireless Communication X X X X X X X X

Orbital Angular Momentum X X X X X X X

Atmospheric Turbulence Simulation X X X X

Adaptive Optics X X X X X X

Shack-Hartmann wave-front

Sensing technique
X

Phase Retrieval Algorithm-based

Wave-front sensing technique
X X X X

Probe Expansion X X

Experimental AO analysis X X X

Simulation AO analysis X X X X

Noise Model X X

The phase retrieval algorithm (PRA) has been conceived

for reconstructing the phase from intensity information by

exploiting any partial constraints, such as those observed in

the object and Fourier domains. Explicitly, we have to infer

the intensity of the probing beam in both the object and

the Fourier domain as the input information of the algorithm

to reconstruct the wave-front of the probe beam, which can

be collectively termed as double-intensity measurements PRA

(DPRA)-based AO (DPRA-AO) approaches [22], for both the

HIOA and GSA [23]. These DPRA-AO systems require at

least one beam splitter (BS) and two charge-coupled devices

(CCDs). The BS halves the intensity of the probe beam, and

the two CCDs constitute two detector-noise sources. On the

other hand, compared to focused probe detection in the Fourier

domain, optical detection in the object domain requires a wide

field and imposes more detection noise.

We observe that in most cases of practical interest, the

atmospheric phase is uniquely related to the Fourier intensity

measurements [24]. Furthermore, AO in the communication

links should ideally be miniaturized at a low cost [25], [26].

It is possible to recover the wave-front of the probe beam

by solely relying on the intensity in the Fourier domain,

provided that sufficient prior information is available about

the probe beam [27]. Therefore, in this paper, we propose

a low-complexity single-intensity-measurement PRA (SPRA)-

based wave-front sensing technique for reconstructing the

wave-front information of the probe beam relying on a low-

complexity SPRA-based AO (SPRA-AO) system. The primary

contributions of this paper are summarized as follows.

• We conceive a low-complexity and yet robust SPRA-

AO technique which only has to detect a single Fourier

intensity of the probe beam.

• An analytical expression is derived for characterizing

the expansion of the OAM probe beam in an AO-based

OAM-OWC system. Moreover, since there is a paucity

of literature on this subject, the models of both the

background noise and of the CCD detector noise of

DPRA-AO and SPRA-AO based OAM-OWC systems are

established.

• Extensive simulations have been conducted for evaluating

the performance of our proposed SPRA-AO, demonstrat-

ing that it improves the bit error rate (BER) by orders of

magnitude. Furthermore, we demonstrate that SPRA-AO

has better robustness than DPRA-AO in the face of both

background noise and detector noise.

Our new contributions are boldly and explicitly contrasted

to the literature at a glance in Table I.

The rest of this paper is organized as follows. Section II A

describes the OAM-OWC system relying on the SPRA-AO

technique. Section II B derives the analytical expression of

the probe beam expansion in OAM-OWC links. Furthermore,

the SPRA principle is introduced and its constraint setting

is detailed in Section II C. Then, the models of both the

background noise and of the detector noise of the PRA-

AO approach are established in Section II D. Finally, Sec-

tion III evaluates the compensation performance attained by

the SPRA-AO technique, while Section IV concludes the

paper.

II. CONCEPT AND PRINCIPLE

A. Schematic of an OAM-OWC system relying on the SPRA-

AO technique

The schematic of our OAM-OWC system is shown in Fig. 1.

At the transmitter, the OAM beam used for the desired signal

and the probe beam are polarization-multiplexed by a polariz-

ing beam splitter (PBS) and propagated collinearly through the

atmospheric turbulence channel, where the probe beam is used

for estimating the turbulence-induced distortions which can

then be exploited for decontaminating the OAM beams [12].

The probe beam used for sampling the AT is expanded to a

predetermined size as wide as that of the signal OAM beam

relying on a beam expander [19]. During the propagation, the
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Fig. 1. Schematic of our OAM-OWC system equipped with an SPRA-AO module. (PBS: polarizing beam splitter, AT: atmospheric turbulence, L1: Fourier
lens, f0: back focal length of L1.)

atmospheric turbulence impairs the propagation modes and

spreads the emitted modes into adjacent modes. As shown in

Fig. 1, the OAM beams having clear doughnut-like intensity

distribution would become distorted [28], hence each particu-

lar OAM mode may become coupled with its neighbouring

modes, and therefore the communication performance may

be degraded [15]. The distorted multiplexed beams are then

partitioned into the OAM signalling beam and the probe beam

by using a PBS at the receiver. The probe beam is then entered

into the AO module, which consists of the wave-front sensor,

wave-front controller and wave-front corrector. The wave-front

sensor surrounded by a dashed line in Fig. 1 is composed

of the Fourier lens L1, a CCD camera and a data processor.

The Fourier lens L1 of Fig. 1 is used here to focus the beam

and to estimate the spatial spectral distribution of the probe

beam. The CCD camera of Fig. 1 in the focal plane of L1 is

used for capturing the Fourier intensity pattern of the probe

beam. Then, the data processor retrieves the phase of the

probe beam from the focal plane intensity information with

the aid of the SPRA and estimates the phase-change induced

by turbulence. Finally, the estimated phase-correction signal

is forwarded by the controller to the wave-front corrector of

Fig. 1 for decontaminating the signal beam.

The Laguerre-Gaussian (LG) beam is a simple and widely

used vortex beam, which can be characterized by a pair of

indices, i.e. the azimuthal index l and the radial index p [29].

Hence, we consider it as an example in our analysis. The LG

Fig. 2. Intensity and phase distributions of LG beams with different azimuthal
state indexes.

modes having different l values or p values are orthogonal

to each other. In the classical domain, mode multiplexing

(i.e., each mode carries an independent data stream) and data

encoding (i.e., each pulse occupies a given LG mode state)

using different l or p values have the potential of substantially

increasing the capacity of communication systems [30]. The

intensity and phase distributions of LG beams associated with

different azimuthal state indices are shown in Fig. 2, where the

doughnut-shaped intensity profiles are clearly visible because

of the phase singularity at the beam center. The definition of

an LG mode [30] that gives the intensity distribution for the

lowest-order radial LG mode p = 0 can be formulated as:
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I(r, φ, z) =
2

ω2(z)π |l|!

[

r
√
2

ω(z)

]2[l]

exp

[−2r2

ω2(z)

]

, (1)

which is normalized as
∫∞

0

∫ 2π

0
I(r, φ, z)r dφ dr = 1. In (1), r

is the radial cylindrical coordinate, φ represents the azimuthal

angle and l is the azimuthal state index. Moreover, ω(z)
denotes the beam radius at the propagation distance z, which

can be expressed as

ω(z) =
√

ω2
0 + (z/zR)2, (2)

where λ is the optical wavelength, while zR = πω2
0/λ is

the Rayleigh range and ω0 represents the 1\e radius of the

Gaussian term of the LG beam, which is also termed as the

beam waist [31]. In the AO-based OAM-OWC system of Fig.

1 we utilize the OAM beam as the probe beam, because the

OAM beam associated with hollow intensity and used as a

probe beam outperforms the Gaussian probe beam in AO-

based OAM systems [22].

B. The expansion scheme of the probe beam in OAM-OWC

systems

In an AO-based OAM-OWC system, the phase-change

imposed by atmospheric turbulence is estimated by the probe

beam and then used for the decontamination of the signal

beam. For achieving more accurate phase compensation, the

expanded probe beam should remain as wide as the signal

beam during their collinear propagation in order to satisfy

the assumption that the OAM signalling beam and probe

beam undergo similar wave-front aberrations because of tur-

bulence [32]. However, if the probe beam is much wider

than the signal beam, the probe beam will experience more

severe turbulence-induced distortion than the signal beam. It

has been demonstrated that the degree of wave-front aberration

similarity between the signal and probe beam depends to some

extent on the intensity distribution similarity of these two

beams. In other words, the AO compensation performance

is also affected by the intensity distribution similarity of the

signal and the expanded probe beam. Fig. 3 shows the intensity

distributions of the OAM signalling beam and expanded probe

beam during their propagation. Therefore, in this section, we

conceive a beneficial scheme for ensuring that the intensity

distributions of the two beams remain similar.

For convenience, the notations used in the following deriva-

tion are summarized at a glance in Table II. We define the

intensity correlation coefficient [33] between the signal beam

and the expanded probe beam as follows:

C =

∫∞

0

∫ 2π

0
Ip(r, φ, z) · Is(r, φ, z)r dφ dr

√

∫∞

0

∫ 2π

0
I2p(r, φ, z)r dφ dr ·

∫∞

0

∫ 2π

0
I2s (r, φ, z)r dφ dr

,

(3)

where Ip(r, φ, z) and Is(r, φ, z) are the intensities of the probe

beam and signal beam, respectively. Combined with (1) and

(3), C can be reformulated as

TABLE II
THE EXPLANATION OF NOTATIONS IN THE FOLLOWING DERIVATION.

Notation Declarations Notation Declarations

Ip
The intensity of the

probe beam
Is

The intensity of the

signal beam

lp
The state number of

the probe beam
ls

The state number of

the signal beam

ωp(z)
The beam radius of

the probe beam
ωs(z)

The beam radius of

the signal beam

ω0 p
The beam waist of

the probe beam
ω0 s

The beam waist of

the signal beam

C =

(

1

ωs(z)

)1+2|ls| ( 1

ω2
s(z)

+
1

ω2
p(z)

)−1−|ls|−|lp|

·
(

1

ωp(z)

)1+2|lp|

· 21+|ls|+|lp|

· Γ (1 + |ls|+ |lp|)
√

Γ (1 + 2 |ls|) · Γ (1 + 2 |lp|)
,

(4)

where Γ(·) represents the classical gamma function.

We can derive the optimal beam waist ω0 p of the probe

beam for maximizing C by solving the following equation

∂C

∂ω0 p
=

∂C

∂ωp
· ∂ωp

∂ω0 p
= 0. (5)

Upon combining (2) and (5), and solving (5), we can

determine the relationship between ωp(z) and ωs(z)

ωp(z) =

√

2 |ls|+ 1

2 |lp|+ 1
· ωs(z). (6)

The mathematical expression of the probe beam broadening

in an OAM-OWC link is shown in (6). When the beam radii

of the probe and signal beam satisfy the relationship shown

in (6), the correlation coefficient C is maximized, as is the

intensity distribution similarity of the two beams.

Note that the optimal beam waist of the probe beam is

calculated by (2) and (6) based on the longest propagation

distance. The above derivation describes a single OAM chan-

nel associated with the transmission state index ls. By contrast,

for multiple links, |ls| represents the maximum absolute value

of the state index in the transmitted OAM beams [22].

C. Single-intensity-measurement based phase retrieval algo-

rithm

In this section, we describe an SPRA that estimates the

wave-front of an OAM beam based on its Fourier intensity

and on the knowledge of the object constraints. The flow-chart

of the SPRA is shown in Fig. 4.

Let us denote the optical field of the received probe beam

in the object domain as f(x, y) and in the Fourier domain

as F (u, v), where (x, y) are the associated spatial coordinates

and (u, v) are the spatial frequency coordinates. The object

domain represents here the distorted probe beam f(x, y) of
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Fig. 3. Stylized propagation of both the OAM signalling beam and expanded probe beam.

the OAM-OWC system, which corresponds to the optical

field distribution in the front focal plane of L1 in Fig. 1.

Furthermore, |F (u, v)| is the real-valued modulus obtained by

taking the square root of the Fourier intensity of the object,

which is measured by the CCD of Fig. 1.

Appropriate initialization assists in prompt and accurate

convergence. We set the initial estimated object of the SPRA

to g0(x, y) = F−1
{

|F (u, v)| · ejθ0(u,v)
}

, where θ0 is set to

the phase distribution of the no-turbulence probe beam in the

Fourier domain. As shown in Fig. 4, the SPRA consists of the

following four steps at the k-th iteration [24]:

(1) From gk to Gk: Fourier transform gk;

(2) From Gk to G
′

k: Replace the modulus of the resultant

Fourier transform Gk with the aid of the measured

Fourier modulus |F (u, v)| in order to form an estimate

of the Fourier transform G
′

k ;

(3) From G
′

k to g
′

k : Inverse Fourier transform the estimate

of the Fourier transform G
′

k in order to form an estimate

of the object g
′

k;

(4) From g
′

k to gk+1 : Calculate the input of the next iteration

gk+1 that satisfies the object constraints [23]. The fourth

step is designed by referring to the negative feedback,

which can be expressed as

gk+1(x, y) =

{

g′k(x, y), (x, y) ∈ γ,
gk(x, y)− βg′k(x, y), (x, y) /∈ γ,

(7)

where γ represents the object constraints and β is a constant

feedback parameter having typical values between 0.5 and 1.

The algorithm terminates when the iterations satisfy the

termination criterion or reach a given number.

In the proposed SPRA the only known information is the

modulus in the Fourier domain |F (u, v)|, hence we need suf-

ficient prior information about the object in order to estimate

its phase accurately [34]. The OAM beam has the unique

characteristic that the beam width is related both to the state

index and to the beam waist [31]. In order to achieve accurate

compensation, we rely on the diameter constraints as the prior

information in the SPRA.

For considering the intensity distribution of the OAM beam,

we introduce the diameter constraints as partial constraints of

Fig. 4. The flow-chart of the SPRA. (FT: Fourier transformation; IFT: inverse
Fourier transformation.)

the object quantified by the centrosymmetric circular region

γ, which contains more than 99% of the transmitted intensity

of the probe beam. The radius of the circular region can be

expressed as

RC = 2ωp(z)
√

|lp|+ 1, (8)

where ωp(z) and lp represent the beam radius and state index

of the probe beam, respectively [24]. An example of the object

constraint is given in Fig. 5 from the perspectives of the

intensity distribution and the line intensity profile 1. As shown

in Fig. 5, for (x, y) ∈ γ of the distorted probe beam, the

next estimated object gk+1 is equal to g′k. We assume that

the intensity of the probe beam in the absence of turbulence

in (x, y) /∈ γ is zero. Therefore, for (x, y) /∈ γ, the SPRA

provides negative feedback from the most recently estimated

object gk to drive the next estimated object gk+1 towards zero,

as shown in (7) [22].

D. Robustness analysis of PRA-AO techniques

Sensing light intensity is fundamental to any wave-front

sensor technique [27]. As mentioned above, both the DPRA-

1Line intensity profile is defined as the teo-deminsional intensity distribu-
tion along the horizontal radial vortex centers of the OAM beam.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 6

(a) (b)

Fig. 5. (a) The object constraints and the intensity distribution of the broadened probe beam. (b) Diagram of the constraints and the line intensity profile
along the center of the probe beam. (N: the number of grid points.)

TABLE III
THE EXPLANATIONS OF THE NOISE TYPES USED IN THE NOISE MODEL

Noise type Notation Noise model

Background noise N0 Complex Gaussian white noise

Detector noise Ni Shot noise and readout noise

Shot noise Nsi Poisson noise

Readout noise Nri Gaussian white noise

AO and SPRA-AO estimate the phase impairment from the

measured intensity information, and it is vitally important to

analyze the detector-noise resistance of PRAs. At the time

of writing there is a paucity of literature on the robustness

of the AO approach in OAM-OWC links. We commence

our evaluation of the robustness of SPRA-AO techniques by

establishing the noise model of the SPRA-AO and DPRA-AO.

The principle of GSA-AO has been detailed in [21], while

the schematic of the DPRA-AO and SPRA-AO techniques

and their noise models are shown in Fig. 6(a) and Fig. 6(b),

respectively.

The noise components contaminating the detectors are as-

sumed to be independently and identically distributed and their

features are shown at a glance in Table III. The background

noise, denoted as N0, is modeled by a complex Gaussian white

noise process of mean 0 and variance σ2
0 [35], [36]. As for

the CCD detector noise, we consider the situation in which

the detector noise consists of a combination of shot noise

and readout noise. The shot noise is mainly a combination

of photon noise and dark noise, both exhibiting a Poisson

distribution, since they are based on the random arrival of

photos at the CCD of Fig. 6 [37]. The readout noise is imposed

on the signal during the process of measuring the signal and

it is also assumed to be Gaussian white noise of mean 0 and

variance σ2
1 [38]. The detector noise Nj is given by [39]

Nj = Nsj +Nrj i = (1, 2, 3), (9)

where j represents the CCD index of Fig. 6. Note that there

is no extra parameter associated with the Poisson noise, but

the noise magnitude depends on the intensity of the signal

entering the CCD [40].

At the receiver, the contaminated probe beam is denoted as

ur(r, φ, z), which contains the additive background noise N0

perturbing the multiplexed beam. For the DPRA-AO technique

associated with the noise model of Fig. 6(a), the two inputs

of the DPRA can be expressed as [21]

|f(x, y)| =
√

ICCD1 =

√

|ur(r, φ, z)|2
2

+N1, (10)

|F (u, v)| =
√

ICCD2 =

√

∣

∣

∣

∣

F

[

ur(r, φ, z)√
2

]∣

∣

∣

∣

2

+N2. (11)

For the SPRA-AO technique having the noise model of Fig.

6(b), one of the SPRA inputs is expressed as

|Fs(u, v)| =
√

ICCD3 =

√

|F [ur(r, φ, z)]|2 +N3, (12)

where ICCD3
represents the intensity captured by the CCD3 of

Fig. 6(b) and N3 is the additive detector noise contaminating

the magnitude of the probe beam in the Fourier domain for

the SPRA.

III. SIMULATIONS AND DISCUSSIONS

In the following, we simulate the propagation of the

OAM beam in AT with random phase screens based on

Kolmogorov’s turbulence theory along the propagation path.

The random process of turbulence is typically characterized

in statistical theory, because the complexity of the atmosphere

does not lend itself to prediction and numerical analysis.

Kolmogorov’s turbulence theory describes the average effects

of total beam wander, beam spreading, and scintillation [41].

In our study, the propagation of the OAM beams through a

locally homogeneous and isotropic turbulent medium, which

exhibits modified Von-Karman atmospheric phase characteris-

tics [42], is modeled relying on the simulation tool MATLAB.

The structure constant of the refractive index C2
n is varied

in the range of 1 × 10−16 ∼ 1 × 10−14m−2/3. As for the

simulation parameters, the number of grid points per side is

756. The wavelength λ is set to 532nm. The number of random

phase screens is 11 along the propagation path. Furthermore,
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Fig. 6. Schematic of the AO system and its noise model. (BS: beam splitter (50:50).)

the outer and inner scale of turbulence are 50m and 0.01m,

respectively. The receiver aperture size is set to 0.3m and

the β factor of the SPRA is set to 0.7 [31]. For a given

propagation distance, we set the waist of the signal beam to

ω0−s =
√

λz/π at the transmitter [43]. As for the parameters

of the probe beam, the probe beam is an OAM beam associated

with lp = 1 and the waist of the expanded probe beam follows

(6). As an example, for z = 400m and ls = 3, the waist of

the signal beam ω0−s is 0.0082m and the waist of probe beam

ω0−p can be calculated as 0.017m.

A. Compensation performance analysis of the SPRA-AO tech-

nique

The OAM spectrum is calculated by relying on the so-called

modal decomposition method to characterize the ratio of the

power retained by the original transmit state and of the power

spread into the adjacent channels. The power associated with

the OAM spectrum characterizes the specific proportion of

each state [44]. We define the mode purity as the relative power

of the desired transmit state in the OAM spectrum, and define

the crosstalk as the relative power of the undesired state. The

values of mode purity and crosstalk are between 0 and 1,

where high mode purity and low crosstalk correspond to a

better quality of the OAM beam. Moreover, we define the

squared error (SE) function for quantifying the compensation

performance, which can be expressed as

SE =
∑

i

|pw(i)− p0(i)|2 , (13)

where the variable i represents the state index of the OAM

beam; pw(i) is the relative power of the OAM state index i

of the OAM beam with/without SPRA-AO compensation; and

p0(i) is the relative power of the OAM state index i of the

desired OAM beam in the absence of turbulence. A smaller

SE value corresponds to a better correction performance.

We consider the OAM states l = 3 and l = {−1,+2}
as examples of single-channel and multiplexed-channel com-

munication, respectively, for characterizing the compensation

performance of the SPRA-AO technique. Fig. 7 shows the

spectrum of the OAM signal beams both with and without

SPRA-AO compensation under different turbulence strengths.

The SE values are labeled in Fig. 7(a) - 7(f), where SE0

corresponds to the SE values before compensation, while SE1

corresponds to the values after SPRA-AO compensation. The

SPRA-AO technique has substantial advantages in terms of

accuracy by mitigating the impairments of both single-channel

and multiplexed OAM-OWC systems. After SPRA-AO com-

pensation, the relative power of the desired state increases,

while the crosstalk between adjacent states is mitigated, hence

the SE values are significantly reduced. Explicitly, the mode

purity is improved from 0.52 to 0.74 after compensation, as

shown in Fig. 7(b). In Fig. 7(c), the crosstalk of l = 3 imposed

on the adjacent mode l = 2 is significantly reduced from 0.37

to 0.13 after compensation. Furthermore, the squared error is

reduced from 0.11 to 0.04 after compensation, as seen in Fig.

7(e).

To illustrate the improvement of system’s power penalty,

the bit error rate (BER) both with and without SPRA-AO

compensation is calculated based on [28], when an OAM beam

associated with l = 3 is transmitted under the atmospheric

structure constants of C2
n = 1 × 10−15m−2/3 and C2

n =
1 × 10−14m−2/3. The traditional GSA-AO scheme is used

for benchmarking the BER improvement of the SPRA-AO

and DPRA-AO techniques. During the BER calculations, we

assume that on-off keying or binary pulse position modulation

is used [30]. Fig. 8 presents the BER curves as a function of

the optical signal-to-noise ratio (OSNR), when an OAM beam

with l = 3 is transmitted [11]. Fig. 8(a) and 8(b) show that

after SPRA-AO compensation, the BER performance improves

as a benefit of the corrected OAM beam, and the BER falls

below the forward error correction (FEC) limit of 3.8× 10−3.

Furthermore, the BER is considerably reduced from 0.275 to

1.2×10−4 and 3.1×10−4 relying on SPRA-AO and GSA-AO

compensation, when the OSNR is set to 17dB, as shown in

Fig. 8(b). It can be concluded from Fig. 8(a) and (b) that our

low-complexity SPRA-AO achieves a similar compensation

performance to that of GSA-AO.

The convergence performance is a critical performance
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Fig. 7. OAM spectrum of the OAM beam with or without SPRA-AO compensation. (a)-(c) In the case of a single-OAM link for l = 3. (d)-(f) In the case
of a multiplexed-channel link for l = {−1,+2}. The propagation distance is 400 m.

criterion of the algorithm. The traditional GSA-AO scheme

is used for benchmarking the convergence performance of the

SPRA and GSA. The OAM spectrum of the signal beam using

l = 3 before and after SPRA-AO and GSA-AO compensation

is shown in Fig. 9(a), while the corresponding convergence

curve is shown in Fig. 9(b). It can be concluded from Fig. 9(a)

and 9(b) that SPRA-AO and GSA-AO can achieve a similar

compensation performance and then the SPRA exhibits better

convergence speed than the GSA.

B. Discussion of the probe beam expansion

Recall from Section II B that for accurate phase-

compensation the expanded probe beam has to remain wider

than the signal beam during their collinear propagation. Hence,

to reflect the benefits of the probe beam expansion, we now

carry out a detailed comparative analysis of three different

expansion schemes. The beam waist of the probe beam asso-

ciated with the different expansion schemes is listed in Table

IV, where ω0 s is the beam waist of the signal beam and ω0 p

is that of the expanded probe beam calculated according to

(8). As shown in Table IV, the beam waist of the probe is



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 9

5 10 15 20

OSNR

10
-15

10
-10

10
-5

10
0

B
it
 E

rr
o

r 
R

a
te

w/o Comp

w/  SPRA-AO

w/  GSA-AO

FEC Limit

(a) C2
n = 1× 10−15m−2/3

5 10 15 20

OSNR

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o

r 
R

a
te

w/o Comp

w/  SPRA-AO

w/  GSA-AO

FEC Limit

(b) C2
n = 1× 10−14m−2/3

Fig. 8. BER as a function of the OSNR when an OAM beam using l = 3
is transmitted both with and without SPRA and GSA-AO compensation for
different atmospheric structure constant. The propagation distance is 400 m.

0 1 2 3 4 5 6

OAM State

0

0.2

0.4

0.6

0.8

1

M
o

d
e

 P
u

ri
ty

w/o Comp

w/ SPRA-AO

w/ GSA-AO

(a)

0 10 20 30 40 50 60 70 80 90 100

Iteration

0.5

0.6

0.7

0.8

0.9

1

M
o

d
e

 P
u

ri
ty

w/ SPRA

w/ GSA

(b)

Fig. 9. (a) The OAM spectrum of the signal beam associated with l = 3
both before and after SPRA-AO and GSA-AO compensation. (b) Mode purity
as a function of the number of iterations for the SPRA and GSA. (C2

n =
2× 10−15m−2/3)

TABLE IV
THE BEAM WAIST OF THE PROBE BEAM WITH DIFFERENT EXPANSION

SCHEME

Expansion scheme Without expansion Expansion 1 Expansion 2

Beam waist of

probe beam
ω0 s ω0 p 2ω0 p

TABLE V
THE DETAILED PARAMETERS OF THE DIFFERENT EXPANSION SCHEMES

Parameter Type Value

State index of signal beam 3

State index of probe beam 1

Beam waist of signal beam 0.0082m

Beam waist of probe beam without expansion 0.0082m

Beam waist of probe beam with Expansion 1 0.0173m

Beam waist of probe beam with Expansion 2 0.0346m

equal to that of the signal if there is no probe expansion. In

this context, Expansion 1 represents the scheme we proposed

in Section II B, while Expansion 2 represents an oversized

probe beam. The detailed parameters with different expansion

scheme are shown in Table V.

The curves of the mode purity and the OAM state index

recorded both before and after compensation are shown in

Fig. 10. The curve marked by stars represents the mode purity

after SPRA-AO compensation using Expansion 1, while the

curves marked by triangles and squares represent the mode

purity after compensation without probe expansion and with

Expansion 2, respectively. The results show that the SPRA-

AO relying on the proposed expansion scheme substantially

improves the mode purity of OAM beams having different

state indices and reduces the distortion of the OAM beam.

Furthermore, Fig. 10 shows that the mode purity recorded

either after compensation without expansion or by using

an inappropriate oversized expansion (Expansion 2) is even

lower than that without compensation, confirming that beam

expansion is necessary in a high-performance AO system.

This phenomenon of Fig. 10 can be explained as follows

by relying on a signal beam associated with l = 7 as an

example. Fig. 11 shows the line intensity profiles 2 along the

vortex centers of the signal beam and probe beam both with

and without expansion. Compared to the probe beam without

expansion or to that with oversized expansion, the probe beam

using the proposed expansion has a more similar cross section

of the intensity distribution to that of the signal beam and

undergoes more similar wave-front aberration, when propa-

gating collinearly with the signal beam through atmospheric

turbulence.

The relationship between the propagation distance and mode

purity of the signal beam of l = 7 before and after compensa-

tion is shown in Fig. 12. Each value of mode purity represents

an average of 100 realizations. The curve marked with stars

in Fig. 12 shows that the SPRA-AO technique compensates

the distorted OAM beam quite effectively within 800 m. Fig.

2How these were generated was discussed in a footnote in Section II C.
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Fig. 10. Mode purity as a function of the transmission state index of signal
beams before/after the SPRA-AO operating both with and without probe beam
expansion. (C2

n = 2× 10−15m−2/3, z = 400m.)
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Fig. 11. Line intensity profiles along the vortex centers of the signal
beam with l=7 and the probe beam with and without expansion. (C2

n =
2× 10−15m−2/3, z = 400m.)

12 also indicates the importance of using the most appropriate

expansion of the probe beam in an AO system.

C. Robustness analysis of the SPRA-AO technique

Having verified the efficiency of the SPRA-AO technique

and the benefits of probe expansion, we now further analyze

Fig. 12. Mode purity of the signal beam versus the propagation distance
with/without SPRA-AO compensation. (C2

n = 2× 10−15m−2/3.)

the robustness of the SPRA-AO against both the background

noise and the CCD detector noise.

We first qualify how the background noise affects the

compensation performance of the PRA-AO systems. Fig. 13(a)

shows the mode purity as a function of σ2
0 using the SPRA-AO

and DPRA-AO techniques when only the background noise

N0 exists. We run the tests 100 times under different σ2
0

values and take the average of the mode purity results. Fig.

13(a) shows that despite AO compensation, the mode purity is

reduced upon increasing σ2
0 , which means that the background

noise degrades the AO compensation performance regardless

of whether the SPRA-AO or the DPRA-AO technique is used.

In Fig. 13(a), the mode purity equals to 0.65, 0.72 and 0.77

before compensation as well as after SPRA-AO and DPRA-

AO compensation, respectively, when σ2
0 = 2. This trend

is indeed expected because the intensities in both the object

and the Fourier domain are exploited as prior information by

the DPRA, while the SPRA uses only the intensity in the

Fourier domain as its measured input. It can be concluded that

the SPRA-based AO technique exhibits eroded compensation

performance with less prior information in exchange for its

simplicity.

The curves of the mode purity vs σ2
0 are shown in Fig. 13(b),

when both the background noise and the shot noise of the

detector exist. Observe that the mode purity seen in Fig. 13(a)

and Fig. 13(b) both with and without shot noise are similar.

Therefore, the shot noise is not the dominant factor that affects

the compensation performance. It can be concluded that both

SPRA-AO and DPRA-AO are robust against shot noise.

Let us now introduce both background noise and detector

noise - including shot noise and readout noise - into the

AO module. The mode purity vs the readout Gaussian noise

variance σ2
1 is shown in Fig. 14, where we observe that upon

increasing σ2
1 , the mode purity of SPRA-AO compensation is

seen to be more stable than that having DPRA-AO compensa-

tion. We conclude that SPRA-AO exhibits unique robustness

than DPRA-AO in AO-based OAM-OWC systems.

This phenomenon can be explained as follows. Recall from

Fig. 6 that in the DPRA-AO system, the contaminated probe

beam is split by a BS into two copies for detecting the

intensities in the object and Fourier domain. The split input
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(b) Both the background noise and the shot noise of the CCD
detector exist

Fig. 13. Mode purity versus the background noise variance σ2

0
for the SPRA

and DPRA-AO techniques, when an OAM beam associated with l = 3 is
transmitted. (C2

n = 3× 10−15m−2/3, z = 400m.)
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Fig. 14. Mode purity as a function of the Gaussian noise variance when
an OAM beam with l = 3 is transmitted. (C2

n = 3 × 10−15m−2/3, z =
400m,σ2

0
= 2.)

intensity of the DPRA is halved and the use of two CCD

detectors - instead of a single one - increases the number

of noise sources. As for the SPRA-AO module, the probe

beam does not have to be split, and only a single detector-

noise component is considered. Additionally, the intensity in

the Fourier domain is concentrated on the focal domain by

the Fourier lens. Compared to the influence of the readout

noise on the intensity in the object domain, the effect of noise

having the same variance imposed on the Fourier intensity

in the back focal plane is lower. This is also the reason

that the mode purity associated with SPRA-AO compensation

remains almost unchanged. From this perspective, the SPRA-

AO system is more robust than the DPRA-AO system.

IV. CONCLUSIONS

In conclusion, we conceived and characterized a low-

complexity and high-robustness SPRA-based AO technique

capable of compensating for the distortion of the OAM beam

in OWC links. Only the intensity of the probe beam in

the Fourier domain is required as the measured data of the

SPRA wave-front sensor. Moreover, a probe beam expansion

scheme was proposed for OAM-OWC links for enhancing the

performance of the SPRA. Our simulation results illustrate

that the SPRA-AO technique advocated is capable of decon-

taminating the OAM beam, ameliorating its mode purity and

reducing the crosstalk, hence improving the BER performance

of OAM-OWC links. Compared to GSA-AO, the SPRA-AO

achieves a similar compensation performance at a lower sys-

tem complexity. Additionally, the results show that the SPRA-

AO relying on the proposed expansion scheme accurately

improves the mode purity of OAM beams associated with

different state indices. Finally, we mathematically analyzed

the robustness of the SPRA-AO. Our simulation results show

that the background noise degrades the AO compensation

performance, regardless whether the SPRA-AO or DPRA-AO

approach is used. Under the conditions that both background

noise and detector noise are experienced, SPRA-AO exhibits

better robustness than DPRA-AO in AO-based OAM-OWC

systems.

Our future research may focus on the improvement of

the SPRA-AO compensation to make miniaturized low-cost

implementations a reality. Moreover, the feasibility of the

transmission vector OAM mode will also be explored in our

further research. Our work paves the way toward the practical

application of PRA-based compensation in the AO field and

in OAM-OWC systems.
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Duality of Quantum and Classical Error Correction

Codes: Design Principles & Examples
Zunaira Babar, Hung Viet Nguyen, Panagiotis Botsinis, Dimitrios Alanis, Daryus Chandra, Soon Xin Ng and Lajos

Hanzo

Abstract—Quantum Error Correction Codes (QECCs) can
be constructed from the known classical coding paradigm by
exploiting the inherent isomorphism between the classical and
quantum regimes, while also addressing the challenges imposed
by the strange laws of quantum physics. In this spirit, this
paper provides deep insights into the duality of quantum and
classical coding theory, hence aiming for bridging the gap between
them. Explicitly, we survey the rich history of both classical
as well as quantum codes. We then provide a comprehensive
slow-paced tutorial for constructing stabilizer-based QECCs from
arbitrary binary as well as quaternary codes, as exemplified by
the dual-containing and non-dual-containing Calderbank-Shor-
Steane (CSS) codes, non-CSS codes and entanglement-assisted
codes. Finally, we apply our discussions to two popular code
families, namely to the family of Bose-Chaudhuri-Hocquenghem
(BCH) as well as of convolutional codes and provide detailed
design examples for both their classical as well as their quantum
versions.

Keywords—Channel Coding, Quantum Error Correction, BCH
Codes, Convolutional Codes.

ACRONYMS

ARQ Automatic-Repeat-reQuest
AWGN Additive White Gaussian Noise
BCH Bose-Chaudhuri-Hocquenghem
BCJR Bahl, Cocke, Jelinek and Raviv
BER Bit Error Ratio
BICM Bit-Interleaved Coded Modulation
BICM-ID Bit-Interleaved Coded Modulation with Itera-

tive Decoding
CNOT Controlled-NOT
CRC Cyclic Redundancy Check
CRSS Calderbank-Rains-Shor-Sloane
CSS Calderbank-Shor-Steane
EA Entanglement-Assisted
EXIT EXtrinsic Information Transfer
FPTD Fully-Parallel Turbo Decoder
FPQTD Fully-Parallel Quantum Turbo Decoder
GF Galois Field
IRCC IRregular Convolutional Code
LDPC Low Density Parity Check
LUT Look-Up Table
MAP Maximum A Posteriori
ML Maximum Likelihood
MLSE Maximum Likelihood Sequence Estimation
PCM Parity Check Matrix
PGZ Peterso-Gorenstein-Zierler
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QBCH Quantum Bose-Chaudhuri-Hocquenghem
QBER Quantum Bit Error Ratio
QCC Quantum Convolutional Code
QECC Quantum Error Correction Code
QIRCC Quantum IRregular Convolutional Code
QKD Quantum Key Distribution
QLDPC Quantum Low Density Parity Check
QRS Quantum Reed-Solomon
QSC Quantum Stabilizer Code
QSDC Quantum Secure Direct Communication
QTC Quantum Turbo Code
QURC Quantum Unity Rate Code
RM Reed-Muller
RRNS Redundant Residue Number System
RS Reed-Solomon
RSC Recursive Systematic Convolutional
SISO Soft-In Soft-Out
SNR Signal-to-Noise Ratio
SOVA Soft-Output Viterbi Algorithm
TCM Trellis-Coded Modulation
TTCM Turbo Trellis Coded Modulation
URC Unity Rate Code
VA Viterbi Algorithm

LIST OF SYMBOLS

General Notation

• The notation |.〉 is used to indicate a quantum state.
Therefore, |ψ〉 represents a qubit having the state ψ.

• The notation |.| is used to indicate a magnitude op-
eration. Therefore, |α| represents the magnitude of a
complex number α.

• The notation ⋆ is used to indicate the symplectic product.

• The notation ⊗ is used to indicate the tensor product.

• The notation ⊛ is used to indicate the discrete convolu-
tion operation.

• The notation
∑

is used to indicate the sum operation.

• The notation 〈, 〉 is used to represent the inner product.

• The GF(4) variables are represented with aˆon top, e.g.
x̂.

• The notation (n, k) is used for a classical code, while
the notation [n, k] is used for a quantum code.

• The superscript T is used to indicate the matrix transpose
operation. Therefore, xT represents the transpose of the
matrix x.
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Special Symbols

η Spectral efficiency.
B Classical channel bandwidth.
c Number of pre-share entangled qubits (ebits).
C Classical code space.
C Quantum code space.
C Set of complex numbers.
C Classical channel channel.
CQ(.) Quantum channel capacity.
E Entanglement consumption rate.
Fq Galois field GF(q).
G Generator matrix.
Gn n-qubit Pauli group.
gi ith stabilizer generator.
H Parity check matrix.
H Stabilizer group.
H2(.) Binary entropy function.
H Hadamard gate.
I Pauli-I operator.
k Length of information word.
n Length of codeword.
N Classical noise power.
p Channel error (or flip) rate, e.g. channel depo-

larizing probability.
P Pauli error inflicted on the transmitted code-

word.
Rc Equivalent classical coding rate of a quantum

code.
RQ Quantum coding rate.
S Classical signal power.
Tr[.] Trace operator.
V Clifford encoder.
X Pauli-X operator.
Y Pauli-Y operator.
Z Pauli-Z operator.

I. INTRODUCTION

I
f computers that you build are quantum,
Then spies everywhere will all want ’em.
Our codes will all fail,

And they’ll read our email,
Till we get crypto that’s quantum, and daunt ’em.
Jennifer and Peter Shor

In the midst of the fast technological advances seen over
the last several decades, ‘Quantum Technology’ has emerged
as a promising candidate, which has the potential of radically
revolutionizing the way we compute as well as communicate.
Quantum technology derives its strengths from harnessing the
peculiar laws of quantum physics, namely the superposition
and entanglement. The fundamental postulates of quantum
physics are rather different from the widely known and well-
understood laws of classical physics, as exemplified by New-
ton’s laws and Maxwell’s equations. Explicitly, a quantum bit

(qubit1), which is the integral constituent unit of a quantum
system, exists in ‘superposition’ of the states |0〉 and |1〉 until
it is ‘measured’ or ‘observed’. The superimposed state of a
qubit is expressed as |ψ〉 = α|0〉 + β|1〉, where | 〉 is called
the Ket or Dirac notation [1], which is used for denoting a
quantum state. Furthermore, the complex coefficients α and
β may take any arbitrary value as long as |α|2 + |β|2 = 1.
Upon ‘measurement’ or ‘observation’ invoked for finding out
its value, the qubit |ψ〉 either collapses to the state |0〉 or to
the state |1〉, which may happen with a probability of |α|2 and
|β|2, respectively. Hence, a qubit is basically a 2-dimensional
vector, while an N -qubit composite system may be represented
as a 2N -dimensional vector, which is formulated as:

α0|00 . . . 0〉+ α1|00 . . . 1〉+ · · ·+ α2N−1|11 . . . 1〉, (1)

where αi ∈ C and
2N−1
∑

i=0

|αi|2 = 1. By contrast, ‘entan-

glement’, which Einstein termed as a ‘spooky action at a
distance’ [2], is the mysterious, correlation-like property of
two or more qubits, which implies that the entangled N -qubit
state cannot be expressed as tensor product of the individual
qubits. For example, consider a 2-qubit state |ψ〉 given by:

|ψ〉 = α|00〉+ β|11〉, (2)

and having non-zero coefficients α and β. It is impossible to
express |ψ〉 as the tensor product of constituent qubits, because
we have [3]:

α|00〉+ β|11〉 6= (α1|0〉+ β1|1〉)⊗ (α2|0〉+ β2|1〉), (3)

for any choice of αi and βi subject to normalization, where
⊗ denotes the tensor product2. Consequently, a strange rela-
tionship exists between the two entangled qubits, which entails
that measuring one of them also reveals the value of the other,
even if they are geographically separated. Explicitly, if the first
qubit of Eq. (2) collapses to the state |0〉 upon measurement,
which may happen with a probability |α|2, then the second
qubit is definitely |0〉. Similarly, if the first qubit collapses to
the state |1〉, which may occur with a probability |β|2, then
the second qubit is also |1〉.

The phenomenon of ‘superposition’ as well as ‘entangle-
ment’ have no counterparts in the classical domain, but they
give rise to a new range of powerful computing and secure
communication paradigms. For example, quantum comput-
ing algorithms have the potential to solve problems often
deemed intractable at a substantially reduced complexity, as
exemplified by Shor’s pioneering factorization algorithm [4]
and Grover’s search algorithm [5]. This astounding processing
power is derived from the inherent quantum parallelism result-
ing from quantum-domain superposition. More specifically, in

1A qubit can take different forms, for example two energy levels of an atom,
different alignments of a nuclear spin, two different photon polarizations, or
the charge/current/energy of a Josephson junction.

2The right hand side of Eq. (3) can be expanded as follows:

α|00〉+ β|11〉 6= α1α2|00〉+ α1β2|01〉+ β1α2|10〉+ β1β2|11〉.
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contrast to an N -bit classical register, which can only store one
of the 2N possible values, an N -qubit quantum register can
hold all the 2N possible values (or states) concurrently, hence
facilitating parallel processing, whose complexity is deemed
equivalent to a single classical evaluation. This massive parallel
processing potential may be beneficially exploited in large-
scale communication systems’ processes, for example in multi-
user detection [6], [7] and in routing optimization [8], [9], as
well as in diverse other applications, such as data mining [10]
and Gait Recognition [11], [12], just to name a few.

It is anticipated that the enormous processing capability
of quantum computing algorithms may threaten the integrity
of the state-of-the-art trusted classical public key encryption,
which relies on the computational complexity of the under-
lying mathematical functions. While classical cryptography
is at risk of being deciphered due to quantum computing,
quantum communications support secure data dissemination,
since any ‘measurement’ or ‘observation’ by an eavesdrop-
per perturbs the quantum superposition, hence intimating
the parties concerned [3], [13]. Some of the main applica-
tions of secure quantum communications are Quantum Key
Distribution (QKD) techniques [14], [15], Quantum Secure
Direct Communication (QSDC) [16]–[18], and unconditional
quantum location verification [19] for the future driverless
‘Quantum Car’ [20] and quantum geo encryption [21]. De-
ploying quantum communications further is also imperative
for making the future ‘Quantum Internet’ (Qinternet) [22]
a reality. Explicitly, the Qinternet is envisaged as a global
network of heterogeneous quantum systems, which may be in-
terconnected through quantum channels in pursuit of building
larger quantum systems, for example ultra-powerful distributed
quantum computers [23], [24], long-haul secure QKD, QKD
and quantum based location verification aided secure banking
transactions, as well as ultra-precise quantum clocks for global
synchronization, as illustrated in Fig. 1. It is pertinent to
mention here that the quantum backhaul, which is likely to
be a combination of free-space wireless channels and optical
fibers, is particularly suitable for the Qinternet owing to the
inherent quantum parallelism [22]. More specifically, an N -
qubit quantum state would require only N uses of the quantum
channel for transmitting the complete state information, while
2N channel uses would be required if classical transmission is
invoked. Similarly, if k N -qubit quantum nodes are entangled,
then their overall capacity will be that of a (kN)-qubit system
having a 2kN -dimensional state space. By contrast, if the k
N -qubit nodes are classically connected, they will have an
effective state space of k2n. Hence, quantum connectivity
guarantees an exponentially larger state space compared to
classical connectivity.

Unfortunately, the quantum channels as well as the quan-
tum systems of Fig. 1 are not perfect, which is a major
impediment to the practical realization of a global Qinternet.
More specifically, qubits may experience both channel-induced
as well as quantum processing impairments [25]. Explic-
itly, the deleterious quantum channel attenuation measured in
dB per km severely limits the reliable transmission rate, or
equivalently the transmission range. For example, the secret

Distributed

Quantum Processors

Quantum Key

Distribution Secure Banking

Transactions

Ultra✄Reliable

Quantum

InternetQuantum Link

Classical Link

Quantum Repeater

Classical Repeater

Entangled

Quantum Clocks

Fig. 1: Stylized illustration of the global ‘Qinternet’ intercon-
necting heterogeneous quantum processing and communica-
tion nodes over large distances, for example for distributed
quantum computing, long-haul QKD, QKD and location veri-
fication aided secure banking transactions, as well as for quan-
tum clock aided ultra-precise synchronization and navigation.

key transmission rate of a QKD system decays exponentially
with the distance [26]. By contrast, the quantum processing
impairments are inflicted by the imperfections in the quantum
hardware, such as the quantum gates.

Quantum-based communication systems support the trans-
mission of both classical as well as of quantum information.
When the information to be transmitted is classical, we may
invoke the family of classical error correction techniques for
counteracting the impact of quantum impairments [27], [28].
More specifically, the classical information is first encoded
using a classical error correction code. The encoded bits are
then mapped onto the qubits, which are transmitted over a
quantum channel. The mapping of classical bits to qubits may
be carried out for example by the so-called superdense coding
protocol [27], [29]. Likewise, QKD also relies on classical
error correction codes [30], [31]. By contrast, for a more gen-
eral communication system, which supports the transmission of
both classical as well as quantum information, and for reliable
quantum computation, we have to resort to Quantum Error
Correction Codes (QECCs), which exploit redundancy in the
quantum domain. More explicitly, similar to the classical error
correction codes, QECCs redress the perturbations resulting
from quantum impairments, hence enabling qubits to retain
their coherent quantum states for longer durations with a
high probability. This has been experimentally demonstrated
in [32]–[34].

QECCs relying on the quantum-domain redundancy are
indispensable for conceiving a quantum communication system
supporting the transmission of quantum information and also
for quantum computing. Therefore, in this paper, we survey the
intricate journey from the realm of classical channel coding
theory to that of the QECCs, while also providing a slow-
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paced tutorial on the duality of these two seemingly different
coding regimes. In particular, we provide deeper insights into
the subtle similarities and differences between them.

A. Outline

Fig. 2 provides overview of this paper at a glance. We
commence our discourse in Section II, where we detail the
various quantum channel models and highlight the duality
between the widely used quantum depolarizing channel and
the classical discrete quaternary channel. We then survey the
rich history of classical and quantum codes in Section III. In
Section IV, we detail the transition from the classical to the
quantum code designs with the help of simple design examples.
Specifically, we design the quantum counterpart of the simple
classical rate-1/3 repetition code. We then generalize our
discussions in Section V, where we present the quantum
version of classical linear block codes by relying on the so-
called stabilizer formalism, which is a theoretical framework
conceived for constructing quantum codes from the existing
families of classical error correction codes. Continuing further
our discussions, we next detail the quantum to classical iso-
morphism in Section VI, which is a useful analysis technique
for mapping quantum codes onto the equivalent classical codes
and vice versa. The quantum-to-classical mapping allows us to
use the state-of-the-art classical syndrome decoding techniques
in the quantum realm, while the inverse mapping, i.e. the
classical-to-quantum mapping, helps in importing arbitrary
classical codes into the quantum domain. Furthermore, based
on this isomorphism, we present the taxonomy of stabilizer
codes in Section VII. We also detail the associated design
principles with examples. In Section VIII, we delve deeper
into a pair of popular code families, explicitly the Bose-
Chaudhuri-Hocquenghem (BCH) codes and the convolutional
codes, by providing tutorial insights into their classical as well
as quantum counterparts. Finally, we conclude our discourse
in Section IX.

II. QUANTUM DECOHERENCE

Environmental decoherence generally constitutes a major
source of quantum impairments, which may occur for example
during quantum transmission or quantum processing as well as
in quantum memories. In this section, we review the quantum
channels of Fig. 3, which are widely used for modeling envi-
ronmental decoherence. Explicitly, our intention is to help the
readers understand the duality between quantum and classical
channels.

A. Amplitude Damping Channel

In the simple terms, environmental decoherence may be
described as the undesired interaction, or more specifically
entanglement, of the qubit with the environment, which per-
turbs its coherent superposition of basis states. In one such
instance, the qubit (or quantum system) loses energy due to
its interaction with the environment, for example the excited
state of the qubit decays due to the spontaneous emission

QUANTUMCLASSICAL
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Conclusions
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Classical BCH Codes Quantum BCH Codes

Classical Repetition Code Quantum Repetition Code

Section II: Quantum Decoherence
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Section V
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Fig. 2: Paper Structure.

of a photon or the photon is lost (or absorbed) during its
transmission through optical fibers [35], [36]. This decoher-
ence process can be conveniently modeled using an amplitude
damping channel. Let us consider a qubit realized using a two-
level atom having the ground state |0〉 and the excited state
|1〉. Furthermore, let |0〉E and |1〉E be the basis states of the
environment initialized to the vacuum state |0〉E . Then, the
amplitude damping channel characterizes the evolution of the
resultant system as follows [36]:

|0〉|0〉E → |0〉|0〉E ,
|1〉|0〉E →

√

1− γ|1〉|0〉E +
√
γ|0〉|1〉E , (4)

where γ is the damping probability, or more specifically the
probability of losing a photon. In physically tangible terms,
Eq. (4) implies that the state of the qubit remains the same if
it is in the ground state |0〉, while it looses a photon with a
probability of γ, when in the excited state |1〉. Explicitly, in
the event of a photon loss, the state of the qubit changes from
|1〉 to |0〉, while that of the environment changes from |0〉E
to |1〉E ; hence resulting in the state |0〉|1〉E of Eq. (4), which
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Fig. 3: Quantum channel models.

may occur with a probability of γ. Based on Eq. (4), a qubit
|ψ〉 = α|0〉 + β|1〉, which is in coherent superposition of the
basis states, entangles with the environment as:

|ψ〉|0〉E →
(

α|0〉+ β
√

1− γ|1〉
)

|0〉E +
√
γβ|0〉|1〉E . (5)

It is pertinent to mention here that |ψ〉 is generally not an
isolated qubit. It may be entangled with other qubits as part
of an N -qubit composite quantum system. Hence, slightly
‘abusing’ the usual notation, the coefficient α and β represent
the (N − 1)-qubit states orthogonal to the states |0〉 and |1〉,
respectively, of the qubit undergoing decoherence. We fur-
thermore assume that each qubit interacts independently with
the environment, hence the associated decoherence process is
temporally and spatially uncorrelated. We can readily infer
from Eq. (5) that if the environment is found to be in state |0〉E ,
then |ψ〉 decoheres to (α|0〉 + β

√
1− γ|1〉), which reduces

to

(

α√
1−γβ2

|0〉+ β
√
1−γ√

1−γβ2
|1〉
)

upon normalization, otherwise

|ψ〉 collapses to |0〉. Hence, the loss of energy may be modeled
using an amplitude damping channel NAD, which maps an
input state, having the density operator3 ρ, as follows:

NAD(ρ) = E0ρE
†
0 +E1ρE

†
1, (6)

3If a quantum system is an ensemble of pure states |ψi〉, then it may be
represented by the density operator (also called density matrix) ρ, which is
defined as:

ρ ≡
∑

i

pi|ψi〉〈ψi|,

where pi denotes the probability of occurrence of the ith state |ψi〉.

where the error operators (also called Kraus operators4 ) E0

and E1 are given by [3]:

E0 =

(

1 0
0

√
1− γ

)

, E1 =

(

0
√
γ

0 0

)

. (7)

The decohered state of a qubit may be readily described by
using the error operators of Eq. (7). Resuming our previous
example of |ψ〉 = α|0〉+ β|1〉, the error operator E0 corrupts
|ψ〉 as follows:

E0|ψ〉 =
(

1 0
0

√
1− γ

)(

α
β

)

=

(

α√
1− γβ

)

≡ α|0〉+
√

1− γβ|1〉, (8)

which occurs with a probability of |E0|ψ〉|2 = (1 − γβ2).
Upon normalization, the corrupted state of Eq. (8) is reduced
to:

E0|ψ〉 =
α

√

1− γβ2
|0〉+ β

√
1− γ

√

1− γβ2
|1〉. (9)

Similarly, the error operator E1 acts on |ψ〉 as follows:

E1|ψ〉 =
(

0
√
γ

0 0

)(

α
β

)

=

(√
γβ
0

)

≡ √
γβ|0〉, (10)

which happens with a probability of |E1|ψ〉|2 = γβ2 and is
equivalent to the classical bit |0〉. In realistic systems, γ at
time instant t is characterized by the qubit relaxation time T1
as follows [37]:

γ = 1− e−t/T1 . (11)

B. Phase Damping Channel

Another instantiation of environmental decoherence, known
as dephasing or phase damping, characterizes the loss of
quantum information without the loss of energy, which may
occur for example due to the scattering of photons, or the
perturbation of electronic states caused by stray electrical
charges. The error operators of the resultant phase damping
channel NPD are defined as follows [3]:

E0 =

(

1 0
0

√
1− λ

)

, E1 =

(

0 0

0
√
λ

)

, (12)

where λ is the scattering probability of a photon (without loss
of energy). We may observe that E0 of Eq. (12) is similar

4A quantum channel N is a completely positive, trace-preserving linear
mapping, which maps an input state having the density ρ as [3]:

N (ρ) =
∑

k

EkρE
†
k
,

where the matrices Ek are known as the Kraus operators or error operators

of the channel. Furthermore, we have
∑

k
E

†
k
Ek = I, where I is an identity

matrix.
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to the E0 of the amplitude damping channel, while the error
operator E1 acts on |ψ〉 as follows:

E1|ψ〉 =
(

0 0

0
√
λ

)(

α
β

)

=

(

0√
λβ

)

≡
√
λβ|1〉, (13)

which occurs with a probability of |E1|ψ〉|2 = λβ2 and it is
equivalent to the classical state |1〉. The probability λ relies on
the relaxation time T1 as well as on the dephasing time T2,
i.e. we have [37]:

λ = 1− e
t

T1
− 2t

T2 . (14)

Intuitively, Eq. (11) and Eq. (14) imply that the qubit is likely
to decohere if the operation time (transmission or processing
or storage) t is comparable to the relaxation time T1 and the
dephasing time T2. Equivalently, T1 and T2 characterize the
life-time of a reliable qubit.

C. Pauli Channel

The environmental decoherence can be completely modeled
using a combined amplitude and phase damping channel.
However, it is not feasible to classically simulate such channels
for an N -qubit composite system, since the resultant system
has a 2N -dimensional Hilbert space. For the sake of facilitating
efficient classical simulations, the combined amplitude and
phase damping channel can be approximated using a so-called
Pauli channel NP, which maps an input state, having the
density operator ρ, as follows [38]:

NP(ρ) = (1− pz − px − py)ρ+ pzZρZ+ pxXρX+ pyYρY,
(15)

where I, X, Y and Z are single-qubit Pauli operators (or gates)
of Fig. 4 defined as:

I =

(

1 0
0 1

)

, X =

(

0 1
1 0

)

,

Z =

(

1 0
0 −1

)

, Y =

(

0 −i
i 0

)

, (16)

while pz , px and py are the probabilities of encountering Z,
X and Y Pauli errors, respectively, which rely on the qubit
relaxation and dephasing time as given below:

px = py =
1

4

(

1− e−t/T1

)

pz =
1

4

(

1 + e−t/T1 − 2e−t/T2

)

. (17)

Explicitly, I is an identity operator, or merely a repeat gate,
which leaves the state |ψ〉 intact, as shown below:

I|ψ〉 =
(

1 0
0 1

)(

α
β

)

=

(

α
β

)

≡ α|0〉+ β|1〉. (18)

I

X

Z

Y

α|0〉+ β|1〉 α|0〉+ β|1〉

α|0〉+ β|1〉 α|0〉 − β|1〉

α|0〉+ β|1〉 β|0〉+ α|1〉

α|0〉+ β|1〉 −iβ|0〉+ iα|1〉

Fig. 4: Schematic of Pauli-I, Pauli-Z, Pauli-X and Pauli-Y
gates.

The operator Z is a phase-flip operator, which acts as:

Z|ψ〉 =
(

1 0
0 −1

)(

α
β

)

=

(

α
−β
)

≡ α|0〉 − β|1〉, (19)

while X is a bit-flip operator analogous to the classical NOT
gate, which yields:

X|ψ〉 =
(

0 1
1 0

)(

α
β

)

=

(

β
α

)

≡ β|0〉+ α|1〉. (20)

By contrast, Y is a combined bit-and-phase-flip operator (Y =
iXZ), which acts on |ψ〉 as:

Y|ψ〉 =
(

0 −i
i 0

)(

α
β

)

=

(

−iβ
iα

)

≡ −i(β|0〉 − α|1〉). (21)

Hence, the Pauli channel of Eq. (15) maps the input state
|ψ〉 onto a linear combination of the original state (Pauli-I
operation), phase-flipped state (Pauli-Z operation), bit-flipped
state (Pauli-X operation), as well as bit-and-phase-flipped state
(Pauli-Y operation) during the process of decoherence. In
essence, the resultant quantum error is continuous in nature.
We may observe in Eq. (17) furthermore that the time T1
affects bit-flips, phase-flips as well as bit-and-phase-flips. By
contrast, the time T2 is only related to the phase-flip errors.
This is because the bit-flip as well as bit-and-phase-flip errors
are associated with amplitude damping, while the phase-flip
errors result from phase damping. In most practical systems,
the value of T1 is several orders of magnitude higher than
that of T2 [39], [40]. Consequently, most practical quantum
systems behave as so-called asymmetric channels and they
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Fig. 5: Mathematical interpretation of quantum channel mod-
els.

experience more phase-flips than bit-flips as well as bit-and-
phase-flips. Furthermore, a special class of Pauli channels,
known as the ‘depolarizing channel’, models the worst-case
scenario by assuming that all three errors are equally likely, i.e.
(pz = px = py). Explicitly, a depolarizing channel having the
probability p inflicts a phase-flip (Pauli-Z) or a bit-flip (Pauli-
X) or bit-and-phase-flip (Pauli-Y) error with a probability of
p/3 each, which may be mathematically encapsulated as:

NDP(ρ) = (1− p)ρ+
p

3
(ZρZ+XρX+YρY) . (22)

In this treatise, we will only consider the widely used depo-
larizing channel model.

The aforementioned quantum channel models are summa-
rized in Fig. 5. We may observe in Fig. 5 that the Pauli
channel may be deemed to be the quantum analogue of
the classical discrete quaternary channel. However, while the
classical quaternary channel may inflict only one of the four
possible errors, the error inflicted by the Pauli channel may
be in superposition of the four possible errors, i.e. I, Z, X
and Y. The Pauli channel may further be simplified by using
two independent bit-flip and phase-flip channels, which are
analogous to classical binary symmetric channels having cross-
over probabilities of (px + py) and (pz + py), respectively.

III. HISTORICAL OVERVIEW OF CLASSICAL & QUANTUM

ERROR CORRECTION CODES

In this section, we survey the major milestones both in the
realm of classical as well as in quantum coding theory, which
are chronologically arranged in Table .

A. Classical Coding Theory

1) Design Objectives: Shannon’s pioneering work [41] on
classical channel capacity marks the beginning of classical
coding theory. Explicitly, Shannon predicted that sophisticated
channel coding techniques, having coding rate R lower than
the Shannon limit (or channel capacity) C, may be invoked
for the sake of achieving reliable transmission over a noisy
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Fig. 6: Shannon capacity limit for AWGN channel character-
ized by Eq. (24).

bandwidth-limited channel. Intuitively, this implies that it is
possible to transmit information virtually free from errors,
as long as the coding rate does not exceed the Shannon
limit,which is characterized by the channel bandwidth B (Hz),
the signal power S (Watts) and the uncorrelated Additive
White Gaussian Noise (AWGN) power N (Watts) as follows:

C = B log2

(

1 +
S

N

)

, (23)

or equivalently in terms of the spectral efficiency (bits/s/Hz)
as:

η =
C

B
= log2

(

1 +
S

N

)

. (24)

Hence, the Shannon limit of Eq. (23) (and equivalently
Eq. (24)) quantifies the highest possible coding rates still
capable of ensuring error-free transmission, as illustrated in
Fig. 6. Furthermore, we may infer from Eq. (23) that the
resultant information transfer rate of a system is limited by
the channel bandwidth B as well as the system’s Signal-
to-Noise Ratio (SNR) S/N . As demonstrated in Fig. 6, the
capacity limit increases upon increasing the SNR. Ultimately,
when the SNR approaches infinity in the noiseless scenario,
it is possible to achieve an infinite transmission rate even
for a very low bandwidth. Similarly, the capacity limit also
increases upon increasing the bandwidth. Hence, we may strike
a trade off between the bandwidth and the SNR, as detailed
and exemplified in Section 2.13.1 of [133]. However, an
infinite bandwidth does not guarantee an infinite transmission
rate, because the noise power also increases upon increasing
bandwidth, as shown mathematically in [133].

Shannon did not provide any explicit code constructions
in his seminal work [41]. However, his work inspired the
research community to design practical codes in line with
the achievable code design region of Fig. 6. This in turn
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Classical Quantum

Shannon Limit [41] −
−

Hamming Codes [42] 1950 −
−
−
−

Reed-Muller (RM) Codes [43], [44], Wagner decoding [45] −
Convolutional Codes [46] −

−
Cyclic codes [47] −

−
Bose-Chaudhuri-Hocquenghem (BCH) Codes [48], [49] −

Reed-Solomon (RS) codes [50] 1960 −
Peterson-Gorenstein-Zierler (PGZ) decoding algorithm [51] −

Low Density Parity Check (LDPC) codes [52] −
−
−

Berlekamp-Massey algorithm [53]–[56] −
Redundant Residue Number System (RRNS) codes [57], [58] −

Viterbi algorithm [59] −
−
−

1970 −
−

Chase algorithm [60] −
−

Maximum A Posteriori (MAP) algorithm [61] −
−
−
−

Trellis decoding of block codes [62] −
−

1980 −
−

Trellis Coded Modulation (TCM) [63]–[65] −
−
−
−
−
−
−

Soft-Output Viterbi Algorithm (SOVA) [66] −
Max-Log-MAP algorithm [67] 1990 −

−
Bit-Interleaved Coded Modulation (BICM) [68], [69] −

Turbo Codes [70], [71] −
Soft-In Soft-Out (SISO) Chase algorithm [72], [73] −

Log-MAP algorithm [74], Rediscovery of LDPC codes [75], [76] − Shor’s code [77]

Turbo BCH code [78] − Calderbank-Shor-Steane (CSS) codes [79]–[81], 5-qubit code [82], [83], Quantum

Stabilizer codes (QSC) [84], [85]

Turbo Hamming code [86], BICM with Iterative Decoding (BICM)-ID [87] − Hashing bound [88], Quantum BCH (QBCH) codes [89]–[94], Toric codes [95],

[96]

Turbo Trellis Coded Modulation (TTCM) [97] −
Punctured turbo codes [98] − Quantum Reed-Muller codes [99], Quantum Reed-Solomon codes [100]

Unity Rate Code (URC) [101] 2000 −
EXtrinsic Information Transfer (EXIT) chart [102] − Quantum LDPC (QLDPC) codes [103]

IRregular Convolutional Codes (IRCC) [104] − Entanglement-Assisted Quantum Error Correction Codes (EA-QECC) [105]

− Quantum Convolutional Codes (QCC) [106]

−
−

Reduced-complexity non-binary EXIT chart [107] − Entanglement-Assisted QSC (EA-QSC) [108]–[110]

−
Near-capacity TTCM [111] − Quantum Turbo Codes (QTC) [112], [113], Improved QLDPC decoder [114]–[116]

Polar codes [117], Near-capacity BICM-ID [118] − Entanglement-Assisted QLDPC (EA-QLDPC) codes [119]

2010 − Entanglement-Assisted QCC (EA-QCC) [120]

− Entanglement-Assisted QTC (EA-QTC) [121], [122]

− Entanglement-assisted polar codes [123]–[125]

− Degenerate Viterbi decoding [126], Near-capacity codes for entanglement-assisted

classical communication [27]

− EXIT chart [127]

Fully-Parallel Turbo Decoder (FPTD) [128] − Quantum IRCC (QIRCC) [129], Unassisted qauntum polar codes [130]

− Quantum URC (QURC) [131], Fully-Parallel Quantum Turbo Decoder

(FPQTD) [132]

TABLE : Major achievements in the classical and quantum coding paradigms.
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Fig. 7: Stylized representation of conflicting design parameters
affecting the design of classical codes.

highlighted various other conflicting design trade-offs, which
are captured in Fig. 7. For example, given particular channel
conditions, a code may be optimized to achieve a lower
Bit Error Ratio (BER) or a higher coding gain5. However,
this typically imposes an increased decoding complexity and
transmission delay, or reduced effective throughput, as detailed
in [133], [134].

2) Error Correction Codes: In 1950, Hamming conceived
the first practical family of classical error correction codes [42].
More specifically, Hamming proposed an infinite family of
binary linear block codes capable of encoding k = (2r−1−r)
information bits into n = (2r − 1) coded bits for r ≥ 2.
The resultant codewords had a minimum Hamming distance
of dmin = 3, hence correcting t = (dmin−1)/2 = 1 errors. The
Hamming codes may be classified as being ‘perfect’ codes,
since the associated coding rate R = k/n = 1 − r/(2r − 1)
is the maximum coding rate achievable for dmin = 3 and for a
block length of n = (2r − 1). Following these developments,
in 1954, Reed [43] and Muller [44] independently conceived a
class of multiple error correcting block codes, known as Reed-
Muller (RM) codes. Reed also introduced a simple majority-
logic based hard-decision decoder for RM codes in [43]. The
same year, a soft-decision based decoding algorithm, known
as Wagner decoding [45], was developed for a special class of
RM codes.

The afore-mentioned linear block codes primarily relied on
maximizing the minimum distance for a given pair of (n, k)
codewords encoding k bits into n, or equivalently maximizing
the coding rate given the dmin and n. The resultant families
of Hamming and RM codes only support a limited range
of code parameters given by (n, k, dmin). For the sake of
designing more codes capable of approaching the Shannon

5Coding gain quantifies the reduction in bit-energy achieved at a certain
BER, when error correction is invoked.

limit for a wider range of code parameters at an affordable
implementation complexity, Elias discovered convolutional
codes in 1955 [46], which marks the commencement of
the so-called probabilistic coding era. Convolutional codes
are capable of supporting encoding and decoding procedures
operating in a sliding window, hence resulting in lower la-
tencies than the above block codes. In this spirit, Viterbi
invented a Maximum Likelihood Sequence Estimation (MLSE)
(or equivalently minimum Euclidean distance) algorithm for
convolutional codes [59]. Explicitly, the Viterbi Algorithm
(VA) aim for finding the most likely error sequence at an
affordable decoding complexity. Although the VA is an MLSE
algorithm, the resultant BER of the system is close to the
minimum possible BER, but the latter was only achievable by a
complex Maximum Likelihood (ML) decoder, which evaluates
all valid coded sequences. To circumvent the high complexity
of the latter ML decoder, Bahl et al. proposed the minimum
BER decoding algorithm in 1974 [61], which was named the
Maximum A Posteriori (MAP) algorithm. It is also known as
BCJR after its inventors Bahl, Cocke, Jelinek and Raviv.

Pursuing further the realm of block codes, Prange inves-
tigated cyclic codes in 1957 [47]. Since the cyclic shift of
codewords of cyclic codes are also legitimate codewords, the
associated encoding and decoding procedures can be efficiently
implemented using shift registers. Inspired by these develop-
ments, Hocquenghem [48] as well as Bose and Chaudhuri [49],
[135] independently discovered the family of Bose-Chaudhuri-
Hocquenghem (BCH) codes in 1959 and 1960, respectively.
Specifically, BCH codes constitute the family of multiple-error
correcting cyclic block codes, which encode k ≥ (n − rt)
information bits into n = (2r − 1) coded bits, so that the
resultant codewords exhibit the maximum possible minimum
Hamming distance. In 1960, Reed and Solomon conceived a
non-binary version of BCH codes referred to as Reed-Solomon
(RS) codes [50], while the following year Gorenstein and Zier-
ler developed the Peterson-Gorenstein-Zierler (PGZ) decoding
scheme for non-binary RS/BCH codes. Later, Berlekamp and
Massey developed the Berlekamp-Massey decoding algorithm
for cyclic RS/BCH codes in [53]–[56], while a soft-decision
aided Chase decoder was proposed in [60]. Both these decod-
ing algorithms are widely adopted for decoding BCH as well
as RS codes. Unfortunately BCH codes did not find much
practical applications, except as Cyclic Redundancy Check
(CRC) codes in Automatic-Repeat-reQuest (ARQ) systems. By
contrast, RS codes have found several practical applications
owing to their inherent capability of correcting both random
as well as burst of errors. Explicitly, RS codes are widely em-
ployed in magnetic tape and disk storage, which are susceptible
to burst errors. Furthermore, they are also used as outer codes
in concatenated coding schemes, which have been integrated
in various standardized systems, such as the deep-space coding
standard [136]. Another major milestone in algebraic coding
was achieved with the development of non-binary Redundant
Residue Number System (RRNS) codes [57], [58], which are
are also maximum minimum-distance codes and hence exhibit
similar distance properties to RS codes.

By 1980, error correction codes were successfully deployed
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in various deep-space, satellite and mobile communications
systems in conjunction with modulation schemes. However,
the error correction and modulation modules were treated
independently and the redundancy of the codes extended the
bandwidth requirement, when the signal constellation size
was fixed. For the sake of circumventing this disadvantage
of coding, Ungerboeck invented a bandwidth-efficient trellis-
based joint coding and modulation scheme called Trellis-
Coded Modulation (TCM) [63]–[65]. Explicitly, TCM is a
joint channel coding and modulation scheme, which absorbs
the redundant coding bits by expanding the constellation size
to accommodate more bits/symbols and hence maintains a
fixed bandwidth. TCM provides attractive performance gains
over convolutional codes, while incurring a similar decod-
ing complexity. In 1992, another coded modulation scheme
termed as Bit-Interleaved Coded Modulation (BICM) [68],
[69] was conceived for transmission over fading channels,
which invoked bit-based interleavers in conjunction with Gray-
coded bit-to-symbol mapping. More specifically, parallel bit
interleavers are used at the output of a convolutional code
in this joint coding and modulation scheme for the sake of
increasing the resultant diversity gain by exploiting the fading
of the bits in a multi-bit symbol; hence enhancing the system’s
performance over fading channels. However, BICM does not
outperform TCM over AWGN channels, since it exhibits a
reduced minimum Euclidean distance.

Despite being into the fifth decade of coding theory, the
notion of operating near the Shannon limit was far from real-
ization until Berrou et al. conceived turbo codes in 1993 [70],
[71]. More specifically, turbo code rely on a parallel concatena-
tion of Recursive Systematic Convolutional (RSC) codes with
an interleaver between them. At the decoder, soft iterative
decoding is invoked, which relies on the Soft-In Soft-Out
(SISO) MAP algorithm of [61]. It is pertinent to mention
here that the MAP algorithm only slightly outperforms the VA
in terms of the achievable BER for non-iteratively decoded
convolutional codes, while imposing a substantially higher
complexity. Consequently, MAP decoding was rarely used for
decoding convolutional codes, until turbo codes were invented.
But given that turbo decoders require bit-by-bit soft-metrics,
they required complex MAP decoding. Fortubately, the com-
plexity of turbo decoders may be reduced by invoking less
complex SISO decoders, for example the Soft-Output Viterbi
Algorithm (SOVA) [66], the Max-Log-MAP algorithm [67]
and the Log-MAP algorithm [74].

Berrou’s turbo revolution triggered intensive research efforts
directed towards designing iterative ‘turbo-like’ codes. In par-
ticular, it led to the renaissance of Low Density Parity Check
(LDPC) codes in 1995 [75], [76]. LDPC codes were proposed
by Gallager as early as 1962 [52]. However, the associated
complexity was deemed enormous in that era. Consequently,
LDPC codes were abandoned for decades to come. However,
the invention of turbo codes revived the research interest
in LDPC codes. Turbo revolution also led to other iterative
coding schemes, which include for example Turbo BCH
codes [78], Turbo Hamming codes [86], BICM with Iterative
Decoding (BICM)-ID [87], Turbo Trellis Coded Modulation

(TTCM) [97], punctured turbo codes [98] and Unity Rate Code
(URC) assisted concatenated coding schemes [101]. The in-
vention of EXtrinsic Information Transfer (EXIT) charts [102],
[107] by Ten Brink in 2001 marks another important milestone
in the realm of the afore-mentioned concatenated schemes
relying on iterative decoding. More specifically, EXIT charts
constitute a semi-analytical tool, which aids the design of near-
capacity iterative schemes [134], [137]. Quantitatively, the re-
sultant systems may operate within 1 dB of the Shannon limit,
see for example the IRregular Convolutional Code (IRCC)
assisted concatenated schemes of [104], the TTCM of [111]
and the BICM-ID of [118].

With the help of intensive research efforts, turbo coding
was successfully commercialized within just a few years
and was incorporated into various standardized systems, such
as mobile communication systems and video broadcast sys-
tems [134]. In particular, turbo coding was incorporated in
the 3G UMTS [138] and 4G LTE [139] mobile standards.
However, the high latency associated with turbo codes is an-
ticipated to be a major impediment in next-generation systems
supporting ‘tactile services’. Consequently, a Fully-Parallel
Turbo Decoder (FPTD) was recently conceived by Maunder
in [128], which significantly reduces the associated latency;
hence making turbo codes a promising candidate for next-
generation systems. Over the years, the LDPC coding scheme
has proved to be a fierce competitor of turbo codes, which has
also been adopted by various standards, for example WiMax,
IEEE 802.11n, IEEE 802.3an, and DVB-S2.

Arikan’s polar code [117] conceived in 2009 sparked another
wave of excitement within the coding community, since it is
the first class of channel codes, which provably achieves the
capacity of symmetric memoryless channels, while imposing
only a modest encoding and decoding complexity. Polar codes
invoke a short and simple kernel code, so that the physical
channels are polarized into virtual channels, which are either
perfectly noiseless or completely random, provided that the
block length is sufficiently long. At practical block lengths,
the channels are polarized into a set of high-reliability and
low-reliability virtual channels. Finally, the information bits
are sent across the high-reliability channels, while dummy
bits, called ‘frozen bits’, are transmitted via the low-reliability
channels. If the block lengths are sufficiently long, then the
fraction of high reliability virtual channels is equivalent to
the achievable channel capacity. At the receiver, the polar
decoder invokes a low-complexity successive cancellation de-
coding algorithm, which processes the received bits serially.
Despite having a low encoding and decoding complexity, Polar
codes, relying on cyclic redundancy check-aided successive
cancellation list decoding, are capable of outperforming the
standardized LTE turbo and WiMax LDPC codes at moderate
block lengths, as demonstrated in [140]. Furthermore, the cod-
ing rate of polar codes can be varied almost continuously by
changing the number of frozen bits, hence making them ideal
for rate-compatible scenarios. However, a major limitation of
polar codes is the high latency associated with the polar de-
coder, since it sequentially processes the received information.
Nonetheless, polar codes have already found their way into the
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5G system for enhanced mobile broadband communications,
where polar codes and LDPC codes have been chosen for the
control and data channels, respectively.

B. Quantum Coding Theory

1) Design Objectives: With around seven decades of rich
history, classical coding theory is already quite mature. By
contrast, quantum coding theory is still in its infancy, since
the implementation of quantum technology has not been com-
mercialized. Researchers have been actively working on dis-
covering the quantum versions of the existing classical codes.
In duality to the classical coding theory, QECCs are designed
to achieve the quantum channel capacity [88], [141], [142],
or more precisely the hashing bound. Explicitly, the hashing
bound is only a lower bound, because the actual capacity of a
quantum channel may be higher due to the ‘degenerate’ nature
of quantum codes [143], [144]. To elaborate further, the notion
of degeneracy implies that different error patterns may yield
the same corrupted quantum state. For instance, let us consider
the state |ψ〉 = |00〉+|11〉, which may experience the channel-
induced error IZ or ZI. We may observe that both these error
patterns result in the same channel output, i.e. (|00〉 − |11〉).
Consequently, the error patterns IZ and ZI are classified as
degenerate errors, as further discussed in Section V. Similarly,
the error pattern ZZ leaves the state |ψ〉 intact analogous to
the error-free scenario; hence ZZ and II are also degenerate
errors.

In duality to the Shannon limit of Eq. (23), the hashing
bound is completely specified by the channel’s depolarizing
probability p as follows [82], [122]:

CQ(p) = 1−H2(p)− p log2(3), (25)

where H2(p) denotes the binary entropy function. Explicitly,
a random quantum code C may exhibit an arbitrarily low
Quantum Bit Error Ratio (QBER) at a depolarizing probability
of p, if its coding rate does not exceed the hashing limit CQ(p)
of Eq. (25) and the codeword has a sufficiently long length.

The Hashing bound of Eq. (25) is only valid for unas-
sisted quantum codes. Explicitly, there exists a a family of
Entanglement-Assisted (EA) quantum codes [105], [108]–
[110], which does not exist in the classical domain. In contrast
to the unassisted quantum codes, the EA quantum codes
rely on pre-shared noiseless entangled qubits, which naturally
increases the achievable capacity. Given that c entangled qubits
are pre-shared with the receiver over a noiseless channel, the
associated EA hashing bound is given by [122], [145]:

CQ(p) = 1−H2(p)− p log2(3) + E, (26)

where E denotes the ‘entanglement consumption’ rate, which is
equivalent to E = c

n for a code having k information qubits, n
coded qubits and 0 ≤ c ≤ (n−k) pre-shared qubits. Explicitly,
when c = 0, Eq. (26) reduces to the unassisted hashing bound
of Eq. (25). By contrast, when c has the maximum value of
(n − k), we get the maximally-entangled quantum codes and
the associated maximally-entangled hashing bound is [122],
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[145]:

CQ(p) = 1− H2(p)− p log2(3)

2
. (27)

Hence, as shown in Fig. 8, an EA quantum code can operate
anywhere in the hashing region, which is bounded by Eq. (25)
and Eq. (27). Furthermore, in duality to Fig. 7, the parameters
involved in the design of QECCs are illustrated in Fig. 9.

2) Error Correction Codes: The rate-1/3 repetition code
is the simplest single-error correcting code in the classical
coding paradigm, which relies on the cloning of information
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bits. Unfortunately, qubits cannot be cloned owing to the
existence of the no-cloning theorem. Hence, it was generally
believed that QECCs are infeasible, until Shor pioneered the
first quantum code in 1995 [77]. Shor’s code of [77] is a
rate-1/9 code capable of correcting a single bit-flip, phase-
flip as well as bit-and-phase-flip error. Motivated by this
breakthrough, Calderbank and Shor [80] as well as Steane [79],
[81] independently conceived a generalized framework for
constructing quantum codes from classical binary linear codes,
which constitutes the popular family of Calderbank-Shor-
Steane (CSS) codes. Explicitly, the CSS construction relies
on a pair of classical binary linear block codes C1 and
C2, which satisfy the criterion C2 ⊂ C1. Furthermore, a
special class of CSS codes, called dual-containing CSS codes,
was also introduced, which was derived from dual-containing
binary codes. Explicitly, dual-containing CSS codes constitute
a special type of CSS codes having C2 = C⊥

1 , where C⊥
1 is

the dual code6 of C1. Following these principles, Steane [81]
constructed a rate-1/7 single-error correcting code from the
classical [7, 4, 3] Hamming code. In the spirit of further im-
proving the coding rate, Laflamme et al. [83] and Bennett et
al. [82] independently designed the rate-1/5 quantum code,
which is the optimal single-error correcting quantum code.

The CSS construction of [79]–[81] does not exploit the
redundant qubits efficiently, since the bit-flip and the phase-
flip errors are corrected independently by concatenating a pair
of classical binary codes. For the sake of designing an optimal
code, similar to the rate-1/5 code of [82], [83], it is important
to jointly correct bit-flip and phase-flip errors. In pursuit of
designing such optimized codes, Gottesman established the
theory of Quantum Stabilizer Codes (QSCs) [84] during his
Ph.D [85]. Explicitly, Gottesman presented a more general
formalism, called stabilizer formalism, capable of facilitating
the design of quantum codes from the classical binary and
quaternary codes. As compared to the CSS codes, the stabilizer
formalism imposes a more relaxed constraint, generally called
the ‘symplectic product’ criterion, on the underlying classical
codes; hence, the resultant QECCs can have either a CSS or a
non-CSS (also called unrestricted) structure. In simple terms,
the symplectic product criterion is the constraint imposed on
the constituent classical code (or codes), which ensures that the
resultant quantum code is a valid stabilizer code7. Furthermore,
while the CSS-type codes independently correct bit-flip and
phase-flip errors, the non-CSS codes jointly correct bit-flip and
phase-flip errors. The advent of stabilizer formalism sparked
a major revolution in the history of quantum coding, leading
to the development of various code families, which includes
Quantum Bose-Chaudhuri-Hocquenghem (QBCH) codes [89]–
[94], toric codes [95], [96], Quantum Reed-Muller codes [99],
Quantum Reed-Solomon codes (QRS) [100], Quantum Low
Density Parity Check (QLDPC) codes [103], [146]–[148],
Quantum Convolutional Codes (QCC) [106], [149]–[151],
Quantum Turbo Codes (QTC) [112], [113], Quantum IRregular

6Let C be a classical linear block code having the generator matrix G and
the PCM H, then the dual code C⊥ is the code having the generator matrix
HT and the PCM GT .

7Further details are given in Section VI.

Convolutional Codes (QIRCC) [129] as well Quantum Unity
Rate Codes (QURC) [131].

The Quantum research fraternity has invested the last three
decades in designing the quantum counterparts of the existing
families of classical codes. Except for the parallel concatenated
codes as well as for the joint coding and modulation schemes
of the classical regime, virtually all major families of classical
codes have a quantum counterpart. Amongst these, short
block codes are particularly important from an implementation
perspective, since the quantum technology is still in its infancy
and hence decoherence would prevent the implementation of
long codes. However, the desire to approach the hashing bound
of Fig. 9 motivated researchers to design QLDPC [103], [146]–
[148] codes and QTCs [112], [113], which exploit iterative
decoding. In particular, the sparse nature of LDPC matrix is
particularly important in the quantum domain for achieving
fault-tolerant decoding, since the qubits interact with only a
limited number of other qubits during the syndrome computa-
tion process. Furthermore, since the LDPC matrix is sparse, the
resultant QLDPC codes exhibit high degeneracy. However, the
strict symplectic product criterion associated with the design
of stabilizer codes severely limits the performance of QLDPC
codes. More specifically, owing to the symplectic criterion,
the QLDPC matrix consists of numerous short cycles, which
have a length of 4. This in turn degrades the performance of
the LDPC decoder relying on the message passing algorithm,
as detailed in [116]. Unfortunately, the LDPC decoder is
not capable of capturing the impact of degenerate errors. In
fact, the LDPC decoder suffers from the so-called ‘symmetric
degeneracy error’ [116], which results from the degenerate
errors. For the sake of improving the performance of the LDPC
decoder in the wake of length-4 cycles and the symmetric
degeneracy error, Poulin et al. conceived heuristic methods
in [114]. These methods primarily relied on introducing ran-
dom perturbations for triggering decoding convergence. Then
the QLDPC decoding methods were further improved in [115],
[116]. Despite these developments, the performance of QLDPC
codes is still not comparable to that of classical LDPC codes.

In 2008, Poulin et al. constructed the quantum counterparts
of turbo codes in [112], [113]. While classical turbo codes gen-
erally rely on the parallel concatenation of convolutional codes,
the QTCs of [112], [113] rely on the serial concatenation of
QCCs. As compared to QLDPC codes, QTCs offer more flexi-
ble code parameters, for example the frame length, coding rate,
constraint length as well as the interleaver type. Furthermore,
the iterative decoding of QTCs takes into account the impact of
degenerate errors. However, the stabilizer-based QCCs cannot
be concurrently recursive as well as noncatastrophic8 [112],
[113], [152]. Both these properties are essential for con-
structing good turbo codes. Explicitly, a recursive inner code

8An encoder is catastrophic if it outputs a finite-weight coded sequence
for an infinite-weight input sequence. Consequently, a catastrophic code may
result in catastrophic error propagation, since a finite number of errors on the
coded sequence may yield infinite number of errors on the decoded sequence.
This in turn implies that the constituent codes of a concatenated code must
be non-catastrophic for the sake of achieving decoding convergence.
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is required for achieving an unbounded minimum distance9,
while both component codes of a serially concatenated code
must be noncatastrophic for ensuring decoding convergence to
an infinitesimally low error rate. Hence, the QTCs of [112],
[113] exhibit a bounded minimum distance, since they rely on
non-recursive non-catastrophic QCCs. For the sake of design-
ing near-capacity QTCs, Babar et al. [127] developed EXIT
charts for the quantum domain, while a Quantum IrRegular
Convolutional Code (QIRCC) structure and Quantum Unity
Rate Code (QURC) were proposed in [129] and [131], re-
spectively. Recently, a Fully-Parallel Quantum Turbo Decoder
(FPQTD) was conceived in [132], which substantially reduces
the decoding latency, without degrading the performance.

Recall that stabilizer codes must satisfy the stringent sym-
plectic product criterion. Consequently, not every classical
code can be ‘imported’ into the quantum realm. Furthermore,
the symplectic product criterion results in undesired code
characteristics, for example the unavoidable length-4 cycles of
QLDPC codes and the non-recursive nature of non-catastrophic
QCCs. For the sake of overcoming the issues associated with
the symplectic product criterion, the theory of EA quantum
codes was developed in [105], [108]–[110], which relies on
the pre-sharing of entanglement between the transmitter and
the receiver. The notion of EA codes was adopted for nearly
all coding families, including EA-QLDPC codes [119], EA-
QCCs [120] and EA-QTCs [121], [122], hence alleviating the
issues arising from the symplectic product criterion. Explicitly,
EA-QLDPC codes may be designed with no length-4 cycles in
the binary formalism. Consequently, the resultant performance
is comparable to that of the classical LDPC codes. Similarly,
EA-QCCs can be concurrently recursive as well as non-
catastrophic [121], [122]. Consequently, EA-QTCs are capable
of having an unbounded minimum distance. Hence, the family
of EA quantum codes finally brought the performance of
quantum codes in line with that of their classical counterparts.

Polar codes have also attracted considerable attention within
the quantum research fraternity. Inspired by the provably
capacity achieving nature of Arikan’s polar codes as well as
their efficient encoding and decoding structures, Wilde and
Guha demonstrated the existence of the quantum channel
polarization phenomenon for classical and quantum infor-
mation in [123] and [124], respectively. The quantum polar
codes of [123], [124] invoked a quantum-domain successive
cancellation decoder, which is based on the notion of quantum
hypothesis testing. The resultant decoder failed to match
the decoding complexity of Arikan’s successive cancellation
decoder. This issue was addressed by Renes et al. in [125],
where CSS-type quantum polar codes were constructed from
the classical polar codes, resulting in quantum codes having
efficient encoders as well as decoders. However, the quantum
polar codes of [123]–[125] rely on the sharing of noiseless
entanglement between the transmitter and the receiver. In this
context, the first unassisted quantum polar codes were recently
conceived in [130], which marks another major milestone in

9A code exhibits an ‘unbounded minimum distance’, if its minimum
distance increases almost linearly with increasing the block (or equivalently
frame) length.

the development of quantum codes.

IV. CLASSICAL-TO-QUANTUM TRANSITION

The peculiar laws of quantum mechanics make quantum
coding intrinsically different from their classical counterparts.
Nevertheless, efficient quantum codes can be designed from the
existing families of classical codes by cautiously addressing
the following challenges, which do not exist in the classical
realm.

1) No-Cloning Theorem: Most classical error correction
codes rely on cloning. Explicitly, multiple copies of
the information bits are transmitted for the sake of
providing redundancy. Unfortunately, it is not possible
to clone an arbitrary unknown qubit due to the no-
cloning theorem [153].

2) Measurement Operation: Classical codes rely on mea-
suring (or observing) the values of the received bits for
hard-decision as well as soft-decision aided decoding.
Unfortunately, it is not possible to measure (or observe)
a qubit without perturbing it, which would result in the
superimposed quantum states collapsing to the classical
domain upon measurement.

3) Nature of Quantum Errors: Classical channels only
impose bit-flip errors. By contrast, quantum channels
inflict both bit-flips as well as phase-flip errors. Further-
more, quantum impairments are continuous in nature,
since the received qubit may assume any value on the
Bloch sphere.

In this Section, we elaborate on these challenges by designing
the quantum counterparts of the simple rate-1/3 classical
repetition code, which can only correct a single classical error.
The overall evolution is summarized in Fig. 10 at a glance.

1) No-Cloning Theorem: Quantum codes exploit quantum-
domain redundancy without cloning the information qubits.

The encoder of a 3-bit classical repetition code copies each
information bit thrice. Explicitly, the information bits 0 and 1
are encoded as follows:

0 → (000) 1 → (111) . (28)

The encoding process of Eq. (28) does not have a quantum
equivalent, because quantum information processing does not
permit cloning. Let U be a hypothetical cloning (or copying)
operation described as:

U|ψ〉 = |ψ〉 ⊗ |ψ〉. (29)

Eq. (29) can be expanded as:

U|ψ〉 = (α|0〉+ β|1〉)⊗ (α|0〉+ β|1〉)
= α2|00〉+ αβ|01〉+ αβ|10〉+ β2|11〉. (30)

Alternatively, Eq. (29) can also be evaluated by considering
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Fig. 10: Transition of error correction codes from the classical to the quantum domain [129]. Encoder: Classical encoders copy the
information bits. Unfortunately, no quantum cloning operator exists. Consequently, quantum codes entangle the information qubits
with the auxiliary qubits, so that the information is cloned in the basis states. Channel: Classical information may experience
only bit-flip errors, while qubits may experience bit-flip as well as phase-flip errors. The additional phase-flip errors of the
quantum domain may be corrected by using the Hadamard basis {|+〉, |−〉}. Decoder: Classical decoders measure the received
bits for estimating the transmitted information. Unfortunately, qubits cannot be measured without perturbing their superimposed
quantum state. As an alternate, quantum codes rely on the PCM-based syndrome decoding, hence estimating the channel-induced
error patterns without measuring the received qubits.

the linearity of the cloning operator. Consequently, we have:

U|ψ〉 = U (α|0〉+ β|1〉)
= α U|0〉+ β U|0〉
= α|00〉+ β|11〉. (31)

It can be readily seen in Eq. (30) and Eq. (31) that:

U (α|0〉+ β|1〉) 6= α U|0〉+ β U|0〉, (32)

which violates the linearity of cloning operation. Hence, no
cloning operator U exists in the quantum domain. Conse-
quently, |ψ〉 cannot be encoded to (|ψ〉 ⊗ |ψ〉 ⊗ |ψ〉). The 3-
qubit bit-flip repetition code overcomes the cloning constraint
by cloning the basis states rather than the state |ψ〉, i.e. the
computational basis states |0〉 and |1〉 are encoded as follows:

|0〉 → |0〉 ≡ |000〉,
|1〉 → |1〉 ≡ |111〉. (33)

Explicitly, two auxiliary qubits in state |0〉 are entangled with
the information qubit |ψ〉 with the aid of Controlled-NOT
(CNOT) gates, as shown in the circuit of Fig. 11. CNOT
represents a two-qubit gate, which takes as its input a control
qubit and a target qubit. When the control qubit is in state |1〉,
the target qubit is flipped; otherwise, the target qubit is left
unchanged. This can be mathematically expressed as:

CNOT (|ψ0〉, |ψ1〉) = |ψ0〉 ⊗ |ψ0 ⊕ ψ1〉, (34)

|ψ〉

|0〉

|0〉

|ψ〉

Fig. 11: Encoding circuit of 3-qubit bit-flip repetition code,
where the information qubit |ψ〉 is encoded into |ψ〉 with the
help of two auxiliary qubits.

where |ψ0〉 is the control qubit, while |ψ1〉 is the target
qubit. Consequently, the encoder of Fig. 11 replicates the
computational basis states |0〉 and |1〉 three times in the

encoded 3-qubit output |ψ〉, which is given by:

|ψ〉 ⊗ |0〉⊗2 → |ψ〉 = α|0〉+ β|1〉
≡ α|000〉+ β|111〉. (35)
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Syndrome Error

s e

(00) (000)
(11) (100)
(10) (010)
(01) (001)

TABLE I: Look-up table for the rate-1/3 classical repetition
code.

2) Measurement Operation: Quantum codes have to
estimate the channel errors imposed without measuring (or
observing) the received qubits.

At the receiver, the decoder of a 3-bit classical repetition
code reads the received bits and decodes on the basis of
majority voting. For example, the received codeword (011)
is decoded to 1, while (100) is decoded to 0. This requires
measuring (or observing) the received sequence, which is
unfortunately not possible in the quantum domain. Explicitly,
if the received qubit (α|0〉+ β|1〉) is measured in the compu-
tational basis, it will collapse to the states |0〉 and |1〉 with a
probability of |α|2 and |β|2, respectively.

Alternatively, an (n, k) classical linear block code can be
decoded using an (n − k) × n-element Parity Check Matrix
(PCM) H, so that all error-free legitimate codewords x yield:

xHT = 0, (36)

Given a received codeword y = x+e, where e is the channel-
induced error vector, the associated (n − k)-bit syndrome
vector, which uniquely and unambiguously identifies the error
vector (if the number of channel-induced errors is within the
error correction capability of the code), is computed as:

s = yHT = (x+ e)HT = xHT + eHT = eHT . (37)

Hence, the syndrome can be used for estimating the error
vector e using a pre-computed Look-Up Table (LUT). More
explicitly, since an (n, k) linear block code has (n− k) parity

bits, we have 2(n−k) unique syndromes. Consequently, we can
estimate 2(n−k) unique n-bit error patterns, which are pre-
computed and stored in an LUT. Similarly, a 3-bit classical
repetition code can also be decoded using the PCM-based
syndrome decoding10. The associated PCM is given by:

H =

(

1 1 0
1 0 1

)

, (38)

which yields a zero-valued syndrome vector for both valid
codewords (111) and (000), while at least one of the two syn-
drome elements is 1 when a single bit-flip error is experienced.
The resultant LUT is given in Table I, which records all the
single bit-flip errors that may be estimated with the help of a
3-bit classical repetition code. Intuitively, the first row of H
compares the first two received bits of y. If both bits are equal,

10In contrast to the conventional codeword decoding, which finds the most
likely codeword, having the minimum Hamming distance, syndrome decoding
finds the most likely error, having the minimum Hamming weight.

LUT

Inverse

Syndrome Processing

Encoder
M

M

|ψ̃〉|ψ̂〉

|0〉

|0〉 P̃

R

|ψ̃〉

Fig. 12: Decoding circuit of 3-qubit bit-flip repetition code.

the associated syndrome bit is 0, while if they are different,
then the syndrome bit is 1. Similarly, the second row of H
compares the first and third bit of y.

Working along similar lines, a 3-qubit bit-flip repetition
code can be decoded using a syndrome decoder, which simply
compares the qubits without actually knowing their specific
values. This is achieved by using two additional auxiliary
qubits and the CNOT gates of Eq. (34), as shown in the
‘Syndrome Processing’ block of Fig. 12. Explicitly, it may
be observed in Fig. 12 that the first auxiliary qubit is flipped,
if the first two qubits are different, while the second auxiliary
qubit is flipped, when the first and third qubits are different.
Explicitly, if |ψ〉 is transmitted, then we may receive one of

the following four codewords |ψ̂〉, assuming that only a single
bit-flip is incurred during transmission:

α|000〉+ β|111〉 III−−−−−→ α|000〉+ β|111〉,
α|000〉+ β|111〉 XII−−−−−→ α|100〉+ β|011〉,
α|000〉+ β|111〉 IXI−−−−−→ α|010〉+ β|101〉,
α|000〉+ β|111〉 IIX−−−−−→ α|001〉+ β|110〉. (39)

The syndrome computation process operates on each of the

possible received codeword |ψ̂〉 as follows. Firstly, if both the
first and second qubits as well as the first and third qubits
remain identical, as in the case of error vector III, the auxiliary
qubits remain unaltered:

α|000〉+ β|111〉 ⊗ |0〉⊗2 → α|00000〉+ β|11111〉
= (α|000〉+ β|111〉) |00〉. (40)

Secondly, when both the first and second qubits as well as the
first and third qubits are different, as in the case of error vector
XII, both auxiliary qubits are flipped:

α|100〉+ β|011〉 ⊗ |0〉⊗2 → α|10011〉+ β|01111〉
≡ (α|100〉+ β|011〉) |11〉. (41)

Thirdly, when the first and second qubits are different, but the
first and third qubits are identical, as in the case of error vector
IXI, only the first auxiliary qubit is flipped.

α|010〉+ β|101〉 ⊗ |0〉⊗2 → α|01010〉+ β|10110〉
= (α|010〉+ β|101〉) |10〉. (42)



16

Finally, when the first and second qubits are identical, but the
first and third qubits are different, as in the case of error vector
IIX, only the second auxiliary qubit is flipped.

α|001〉+ β|110〉 ⊗ |0〉⊗2 → α|00101〉+ β|11001〉
= (α|001〉+ β|110〉) |01〉. (43)

Then the auxiliary qubits of Eq. (40) Eq. (43) are measured
in the block M of Fig. 12 to yield the classical syndrome s,
which can take one of the four possible values, i.e. 00, 11,
10 and 01. The syndrome s can then be used for estimating

the error P̃ using the LUT of Fig. 12 seen in Table I.
Thereafter, the transmitted codeword is recovered by applying
the recovery operation R of Fig. 12, which aims for correcting

the channel-induced flips based on the estimated error P̃ .
Explicitly, in the context of the 3-qubit bit-flip repetition
code, Pauli-X gates are applied during the recovery process
for counteracting the impact of the estimated channel error
patterns of Table I. Finally, the estimated information word

|ψ̃〉 is retrieved by feeding the recovered codeword |ψ̃〉 to the
inverse encoder circuit, which is the same as that in Fig. 11,
but operates from right to left, hence mapping the recovered
encoded qubits onto the information qubits. It is pertinent to
mention here that a classical repetition code is systematic in
nature. Consequently, the information bit can be extracted from
the received codeword without invoking an inverse encoding
operation. By contrast, the information qubit of a quantum
repetition code is entangled with auxiliary qubits and hence
cannot be separated without an inverse encoder. For example,

if |ψ̃〉 = α|000〉+ β|111〉, then applying the two CNOT gates
of the inverse encoder of Fig. 11 yields:

α|000〉+ β|100〉 = (α|0〉+ β|1〉)|00〉
≡ |ψ̃〉|00〉, (44)

hence separating the information qubit |ψ̃〉 from the auxiliary
qubits |00〉.

3) Nature of Quantum Errors: Quantum codes correct
quantum bit-flip, phase-flip as well as bit-and-phase-flip errors.

When the classical coded bits (000) or (111) are transmitted,
a 0 may be flipped to a 1 and a 1 may be flipped to a 0.
Consequently, only discrete bit-flip errors are imposed on the
transmitted codewords. By contrast, when a qubit is transmitted
over the depolarizing channel of Section II-C, it may experi-
ence bit-flip, phase-flip as well as bit-and-phase flip errors, as
discussed in Section II. A 3-qubit phase-flip repetition code
may be designed analogous to the bit-flip repetition code,
since phase-flips and bit-flips only differ in their basis of
operation. More specifically, bit-flips flip the computational
basis {|0〉, |1〉}, while phase-flips flip the Hadamard basis
{|+〉, |−〉} defined as:

|+〉 ≡ H|0〉 = |0〉+ |1〉√
2

,

|−〉 ≡ H|1〉 = |0〉 − |1〉√
2

, (45)

|ψ〉
|ψ〉

|0〉

|0〉

H

H

H

Fig. 13: Encoding circuit of 3-qubit phase-flip repetition code,
where the information qubit |ψ〉 is encoded into |ψ〉 with the
help of two auxiliary qubits.

where H represents a Hadamard gate acting on a single qubit
and specified by the matrix [3]:

H =
1√
2

(

1 1
1 −1

)

. (46)

Therefore, a phase-flip (Pauli-Z) switches the Hadamard basis
states as follows:

Z|+〉 = |−〉,
Z|−〉 = |+〉, (47)

while a bit-flip (Pauli-X) switches the computational basis, i.e.
we have:

X|0〉 = |1〉,
X|1〉 = |0〉. (48)

Hence, a 3-qubit phase-flip repetition code protects against
single phase-flip errors by replicating the Hadamard basis
states rather than the information qubit as follows:

|0〉 → |0〉 ≡ |+++〉,
|1〉 → |1〉 ≡ | − −−〉. (49)

This can be achieved by using the encoding circuit of Fig. 13,
which entangles two auxiliary qubits with the information
qubit |ψ〉 using CNOT and Hadamard gates. The circuit of
Fig. 11 is similar to that of the bit-flip repetition code. How-
ever, it invokes additional Hadamard gates, which transform
the computational basis to the Hadamard basis. Consequently,
|ψ〉 is encoded as:

|ψ〉 ⊗ |0〉⊗2 → |ψ〉 = α|0〉+ β|1〉
≡ α|+++〉+ β| − −−〉. (50)

Analogous to the 3-qubit bit-flip repetition decoder, the de-
coder of a 3-qubit phase-flip repetition code also uses two
auxiliary qubits for computing the associated 2-bit syndromes.
The first syndrome compares the phase of the first and second
qubits, while the second syndrome compares the phase of
the first and third qubits. This may be achieved using the
decoding circuit of Fig. 14, which is the same as that of the
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Fig. 14: Decoding circuit of 3-qubit phase-flip repetition code.

3-qubit bit-flip repetition code with the additional Hadamard
gates invoked for transforming the Hadamard basis back to
the computational basis. In other words, we may say that
Hadamard gates are used at the input and output of the channel
to transform the phase-flips to bit-flips. Hence, both bit-flip
and phase-flip errors can be corrected by concatenating the
3-qubit phase-flip and bit-flip repetition codes, which actually
constitutes the rate-1/9 Shor code [77] capable of correcting a
single bit-flip, or phase-flip or alternatively a bit-and-phase-flip
error. More specifically, the information qubit is first encoded
in Hadamard basis using the mapping of Eq. (50). The resultant
three coded qubits are then independently encoded using the
bit-flip repetition code of Eq. (35). Hence, the basis states are
mapped onto three 3-qubit blocks as follows:

|0〉 ≡ 1√
2
(|000〉+ |111〉)⊗ 1√

2
(|000〉+ |111〉)

⊗ 1√
2
(|000〉+ |111〉) ,

|1〉 ≡ 1√
2
(|000〉 − |111〉)⊗ 1√

2
(|000〉 − |111〉)

⊗ 1√
2
(|000〉 − |111〉) , (51)

where the three qubits within a block are the codewords of a
bit-flip repetition code, while the three blocks are the result
of phase-flip repetition encoding. Taking the tensor product in
Eq. (51) yields:

|0〉 ≡ 1√
8
(|000000000〉+ |000000111〉+ |000111000〉

+ |000111111〉+ |111000000〉+ |111000111〉
+ |111111000〉+ |111111111〉),

|1〉 ≡ 1√
8
(|000000000〉 − |000000111〉 − |000111000〉

+ |000111111〉 − |111000000〉+ |111000111〉
+ |111111000〉 − |111111111〉). (52)

Consequently, the encoded state |ψ〉 is equivalent to:

α|0〉+ β|1〉 ≡ 1√
8
(α+ β)(|000000000〉+ |000111111〉

+ |111000111〉+ |111111000〉) + 1√
8
(α− β)

(|000000111〉+ |000111000〉+ |111000000〉
+ |111111111〉), (53)

which may be decoded by concatenating the decoding circuits
of Fig. 12 and Fig. 14. Explicitly, the three 3-qubit blocks of
Eq. (51) are first independently decoded using the 3-qubit bit-
flip repetition decoder of Fig. 12, resulting in three information
qubits, which constitute the received codeword for the 3-
qubit phase-flip repetition decoder. Consequently, the resultant
three qubits are decoded using the 3-qubit phase-flip repetition
decoder of Fig. 14.

Furthermore, as encapsulated in Eq. (22), the received qubit
may be in the superposition of all the possible errors. In
essence, an (n, k) classical code, designed to protect a k-
bit message by encoding it into an n-bit codeword, aims for
restoring one of the 2k valid codewords. By contrast, since
a k-qubit information word is completely described by 2k

continuous-valued complex coefficients, quantum codes have
to restore all the 2k complex coefficients [146]. Fortunately,
this continuous search space is reduced to a discrete one upon
the measurement of the auxiliary qubits used for computing
the syndrome. More specifically, although the 2k coefficients
are continuous-valued, some what serendipitously, the entire
continuum of errors can be rectified, if the code is capable of
correcting discrete bit-flip, phase-flip as well as bit-and-phase-
flip errors acting on the constituent qubits. For example, let us
assume that only a single bit-flip error may be inflicted during
transmission. Then the received codeword of a 3-bit repetition
code can be expressed as:

|ψ̂〉 = p0III|ψ〉+ p1XII|ψ〉+ p2IXI|ψ〉+ p3IIX|ψ〉, (54)

where p0 is the probability of error-free transmission, while
pi is the probability of encountering a bit-flip error on the ith
qubit. The syndrome computation process of Fig. 12 entangles

two auxiliary qubits with |ψ̂〉 of Eq. (54) as:

|ψ̂〉 ⊗ |0〉⊗2 →p0
(

III|ψ〉
)

|00〉+ p1
(

XII|ψ〉
)

|11〉
+ p2

(

IXI|ψ〉
)

|10〉+ p3
(

IIX|ψ〉
)

|01〉,
(55)

which collapses to one of the four superimposed states when
the auxiliary qubits are measured. The resultant state can then
be corrected based on the specific syndrome observed.

V. STABILIZER FORMALISM

The family of Quantum Stabilizer Codes (QSCs) rely on
the same design principles as that of the repetition codes
of Section IV. In particular, QSCs rely on the PCM-based
syndrome decoding of classical linear block codes, hence,
finding the channel-induced error by measuring the auxiliary
syndrome qubits, rather than by observing the received qubits.
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Fig. 15: Schematic of a quantum communication system in-
voking a quantum stabilizer code for error correction [116].

Intuitively, the stabilizer formalism [84], [85] may be inter-
preted as the quantum-domain dual of the classical linear block
coding paradigm. Furthermore, most classical codes exploit
the same basic infrastructure as that of the classical linear
block codes. Consequently, the stabilizer formalism provides
a general theoretical framework for designing the quantum
versions of the known classical codes. In Section V-A, we
provide deeper insights into the duality of QSCs and classical
linear block codes, while in Section V-B, we discuss the
classification of error patterns for both the QSCs as well as
the classical linear block codes.

A. Stabilizer-based Code Design

Fig. 15 shows the system model of a quantum commu-
nication system relying on a QSC. A classical linear block
code C(n, k) encodes k-bit information word x into an n-bit

codeword x with the aid of (n−k) parity bits 0n−k (initialized
to zeros) as follows:

C = {x =
(

x : 0n−k
)

V}, (56)

where V is an invertible encoding matrix of size (n × n).
Similarly, a QSC C[n, k]11 encodes a k-qubit information word
(logical qubits) |ψ〉 into an n-qubit codeword (physical qubits)

|ψ〉 with the help of (n − k) auxiliary qubits (also known as
ancilla), as follows:

C = {|ψ〉 = V(|ψ〉 ⊗ |0n−k〉)}, (57)

where V is an n-qubit unitary encoder. Explicitly, the auxiliary
qubits of a QSC are analogous to the classical parity bits.
The encoded qubits |ψ〉 are transmitted over the quantum
depolarizing channel of Section II-C, which imposes an n-
qubit channel error vector P . The erroneous channel output

|ψ̂〉 may then be expressed as:

|ψ̂〉 = P|ψ〉. (58)

Similar to the decoders of the 3-qubit bit-flip and phase-flip
repetition codes of Fig. 12 and Fig. 14, the decoder of a QSC
invokes a 3-step process for correcting the transmission errors,
which includes syndrome processing, error recovery (R) and
the inverse encoder.

Let us now revisit the ‘syndrome processing’ block of
3-qubit bit-flip repetition code from the perspective of the

11We consistently use round brackets (.) for classical codes, while the
square brackets [.] are used for quantum codes.

stabilizer formalism. Recall from Fig. 12 that we compute the
first syndrome bit by comparing the first and second qubits in
computational basis, while the second syndrome is obtained
by comparing the first and third qubits. This is equivalent to
measuring the eigenvalues12 corresponding to the 3-qubit Pauli
operators g1 = ZZI and g2 = ZIZ, which are known as
the stabilizer generators. Explicitly, Pauli-Z based stabilizer
generators are used for comparing qubits in computational
basis, because they are capable of detecting errors in the
computational basis, i.e. bit-flip errors. If the qubits, which
are being compared, are identical in computational basis, then
the Pauli-Z based stabilizer generators yield an eigenvalue of
+1, while if they are different, then the eigenvalue is −1. For
example, if the received codeword is a valid one, implying that
both the first and second qubits as well as the first and third
qubits are identical as in Eq. (40), then we have:

g1
[

|ψ〉
]

= ZZI (α|000〉+ β|111〉) = |ψ〉,
g2
[

|ψ〉
]

= ZIZ (α|000〉+ β|111〉) = |ψ〉. (59)

Hence, the resultant eigenvalue is +1 for both g1 as well as
g2, when a legitimate codeword is received. By contrast, if

the corrupted codeword of |ψ̂〉 = |100〉 + β|011〉 is received,
implying that both the first and second qubits as well as the
first and third qubits are different as in Eq. (41), then we have:

g1

[

|ψ̂〉
]

= ZZI (α|100〉+ β|011〉)
= −α|100〉 − β|011〉 = −|ψ̂〉,

g2

[

|ψ̂〉
]

= ZIZ (α|100〉+ β|011〉)
= −α|100〉 − β|011〉 = −|ψ̂〉, (60)

where both g1 as well as g2 yield an eigenvalue of −1. Recall
from Eq. (36) that the PCM of a classical linear block code
is designed so that it yields an all-zero syndrome vector for
legitimate codewords, while yielding a non-zero syndrome
vector for erroneous codewords, provided the number of
channel-induced errors is within the error correction capability
of the code. Similarly, the stabilizer generators of a QSC
have to be designed, so that they yield an eigenvalue of +1
for legitimate codewords, while resulting in an eigenvalue of
−1 for corrupted codewords. Hence, in duality to the PCM
H, which completely specifies the codes space of a classical
code C, the stabilizer generators define the code space a
QSC. Furthermore, the complete stabilizer group H of a QSC
consists of all the stabilizer generators and their products. For
example, the stabilizer group H of the 3-qubit bit-flip repetition
code consists of the independent generators g1 and g2 as well
as the product of g1 and g2, i.e. IZZ.

The +1 and −1 eigenvalues of Eq. (60) are mapped onto the
classical syndromes 0 and 1, respectively, when the constituent
Z operators are realized using the quantum circuit of Fig. 16,
where the circuit on the left may be deemed more popular,
while the one on the right is the equivalent circuit more suitable

12The eigenvector of a linear transformation T is a non-zero vector v,
which only changes by a scaling factor when T is applied, i.e. T(v) = λv.
The associated scaling factor λ is known as the eigenvalue.
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|0〉 M

≡

M|0〉HH

Fig. 16: Quantum circuit of measuring the Z operator acting
on the bottom qubit [3] for bit-flip correction. The top qubit
is the auxiliary qubit used for computing the syndrome. The
circuit on the left is more popular, while the one on the right
is more suitable for implementation.

|ψ̂〉 = P|ψ〉 g1|ψ̂〉 g2|ψ̂〉 Syndrome (s) P̂
α|000〉 + β|111〉 +1 +1 (00) III

α|100〉 + β|011〉 −1 −1 (11) XII

α|010〉 + β|101〉 −1 +1 (10) IXI

α|001〉 + β|110〉 +1 −1 (01) IIX

TABLE II: Single-qubit bit-flip errors together with the associ-
ated eigenvalues for the 3-qubit bit-flip repetition code having
g1 = ZZI and g2 = ZIZ.

for implementation [3]. In both circuits of Fig. 16, the top qubit
is the auxiliary qubit used for computing the syndrome, while
the bottom qubit is the coded qubit subjected to the Z operator.
The resultant syndromes are listed in Table II together with
the associated single-qubit bit-flip errors, eigenvalues and the

estimated error pattern P̂ , which may be estimated using the
syndrome decoding approach.

Analogous to the 3-qubit bit-flip repetition code, the code-
word of a 3-qubit phase-flip repetition code is stabilized by the
generators g1 = XXI and g2 = XIX. We may notice here that
while Pauli-Z based stabilizer generators are invoked for bit-
flip detection, Pauli-X based stabilizer generators are invoked
for comparing qubits in the Hadamard basis, because they are
capable of detecting errors in the Hadamard basis, i.e phase-
flip errors. The associated X operators can be implemented
using the circuit of Fig. 17.

Recall from Section IV that Shor’s codewords consist of
three 3-qubit blocks, so that the three qubits within each
block constitute the codeword of a 3-qubit bit-flip repetition
code. Consequently, bit-flips may be detected by independently

H

|0〉 M

≡

M|0〉H

X

H

H

Fig. 17: Quantum circuit of measuring the X operator acting
on the bottom qubit [3] for phase-flip correction. The top qubit
is the auxiliary qubit used for computing the syndrome. The
circuit on the left is the more usual conceptual construction,
while the one on the right is more suitable for implementation.

applying the stabilizer generators of the 3-qubit bit-flip repe-
tition code to the three 3-qubit blocks, which is equivalent to
comparing the three qubits within each block. This results in
the following six stabilizer generators:

g1 = ZZIIIIIII,

g2 = ZIZIIIIII,

g3 = IIIZZIIII,

g4 = IIIZIZIII,

g5 = IIIIIIZZI,

g6 = IIIIIIZIZ, (61)

which helps in detecting single bit-flip errors occurring in each
3-qubit block. By contrast, phase-flip errors may be detected by
comparing the blocks using Pauli-X operators. Explicitly, the
phase information of a 3-qubit block is extracted by applying
the XXX operator to the three qubits. For the 9-qubit Shor’s
code, which consists of three 3-qubit blocks, this may be
implemented using the following two stabilizer generators:

g7 = XXXXXXIII,

g8 = XXXIIIXXX, (62)

where g7 compares the phase of the first two blocks, while g8
compares the phase of the first and third blocks.

Based on the above discussions, the 3-step decoding process
of Fig. 15 may be generalized as follows:

1) Syndrome Processing: While the code space C of a
classical linear block code is defined by a PCM H
having (n − k) independent rows, the associated code
space C of a QSC is described by (n− k) independent
n-qubit Pauli operators gi, for 1 ≤ i ≤ (n− k), which
are generally termed as the stabilizer generators (or
stabilizers in short). Explicitly, stabilizers are unique
operators, which do not perturb the state of legiti-
mate codewords, hence yielding an eigenvalue of +1.
Furthermore, stabilizers yield an eigenvalue of −1 for
corrupted codewords, provided the number of channel-
induced errors is within the error correction capability
of the stabilizer code. This is equivalent to the classical
syndrome values of 0 and 1, respectively, which are
the elements of the syndrome vector of Eq. (37).
Alternatively, we may say that resulting eigenvalue
is +1, when the channel-induced error P commutes
with the stabilizer gi, while it is −1, when the error
anti-commutes with gi. This can be mathematically
encapsulated as:

gi|ψ̂〉 =
{

|ψ〉, giP = Pgi
−|ψ〉, giP = −Pgi,

(63)

where |ψ̂〉 = P|ψ〉. The resultant eigenvalues can be
mapped onto the classical error syndrome s by invoking
the quantum circuits of Fig. 16 and Fig. 17. Hence, the
set of stabilizers constitute the quantum counterpart of
the classical PCM. However, the stabilizers must exhibit
the additional commutativity property, which states that
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the stabilizers must be each other’s commutative pairs.
Explicitly, for a pair of stabilizers g1 and g2, we have:

g1g2|ψ〉 = g1|ψ〉 = |ψ〉, (64)

and similarly:

g2g1|ψ〉 = g2|ψ〉 = |ψ〉. (65)

Hence, the commutativity criterion naturally arises,
which does not exist in the classical realm. Furthermore,
the associated stabilizer group H, which contains the
(n− k) stabilizers gi as well as all the products of gi,
forms an Abelian subgroup of Gn.
The decoder of Fig. 15 processes the syndrome of

the received sequence |ψ̂〉 with the aid of the associ-
ated stabilizers, which are implemented using auxiliary
qubits. Analogous to the decoders of the 3-qubit bit-
flip and phase-flip repetition codes seen in Fig. 12 and
Fig. 14, respectively, the auxiliary qubits collapse to
classical syndromes upon measurement, hence mapping
the eigenvalues of +1 and −1 onto the classical bits 0
and 1, respectively. The resultant classical syndrome
bits are then fed to an LUT or to a classical PCM-
based syndrome decoder for estimating the channel

error vector P̃ (discussed further in Section VI).
2) Error Recovery (R): The error recovery block R of

Fig. 15 recovers the potentially error-free codeword |ψ̃〉
using the estimated error pattern P̃ . Naturally, if the
number of errors exceeds the codes’ error-correction
capability, the recovery process becomes flawed. Hence,
its flawed corrective action actually precipitates more
errors than we originally had.

3) Inverse Encoder: Finally, the inverse encoder of

Fig. 15 maps the recovered codeword |ψ̃〉 onto the esti-

mated transmitted information word |ψ̃〉. More specif-
ically, while an encoder maps the information words
onto the codewords, an inverse encoder works in the
reverse direction, hence mapping the codewords onto
the information words.

Recall from Eq. (64) and Eq. (65) that the (n − k) stabilizer
generators gi of a QSC always commute with each other.
This implies that the constituent X, Y and Z operations
must be selected so that all the resultant stabilizers commute.
Explicitly, the non-Identity X, Y and Z operators intrinsically
anti-commute with each other. For example, we have:

XY =

(

0 1
1 0

)(

0 −i
i 0

)

=

(

i 0
0 −i

)

= iZ, (66)

while:

YX =

(

0 −i
i 0

)(

0 1
1 0

)

=

(

−i 0
0 i

)

= −iZ. (67)

This implies that the operators XY and YX anti-commute,
i.e. we have:

XY = −YX. (68)

Similarly, we can readily show that:

YZ = iX, ZY = −iX → YZ = −ZY

ZX = iY, XZ = −iY → ZX = −XZ. (69)

Owing to this anti-commutative nature of non-Identity Pauli
operators, the stabilizers have to be designed so that there are
only an even number of indices having different non-Identity
operators. For example, the 3-qubit Pauli operators ZZI and
XYZ commute, because they consist of two indices having
different non-Identity operators. By contrast, the operators
ZZI and YZI anti-commute, since there is a single index,
which has different non-identity operators.

B. Classification of Error Patterns

Based on the aforementioned discussions, we may conclude
that the stabilizer generators play the same role in quantum
error correction as the classical PCM H in classical error
correction. Explicitly, analogous to the classical PCM, stabi-
lizers yield syndrome bits, which in turn help in estimating
the quantum channel errors. More specifically, the error set
of a classical linear block code C having a PCM H can be
classified as:

1) Detected Error Patterns: These error patterns yield
a non-trivial syndrome, i.e. eHT 6= 0, which may be
corrected by the code.

2) Undetected Error Patterns: This class of error pat-
terns results in a trivial syndrome, i.e. eHT = 0, which
cannot be detected by the code. More specifically, an
undetected error maps the transmitted codeword onto
another valid codeword. Since the resultant codeword
still lies in the code space C, it does not trigger a non-
zero syndrome. These undetected error patterns result
from the limited minimum distance of the code.

Analogous to the classical detected error patterns, quantum-
domain detected error patterns anti-commute with at least
one of the stabilizer generators, which results in a non-trivial
syndrome. Similarly, the quantum undetected error patterns
commute with all the stabilizer generators, yielding an all-
zero syndrome. This commuting set of error patterns is also
known as the centralizer (or normalizer) of the stabilizer code
having the stabilizer group H, which is denoted as C(H) (or
N(H)). In particular, the centralizer of an [n, k] QSC is a
dual subspace consisting of n-tuple Pauli errors P ∈ Gn,
which are orthogonal to all the stabilizers of the stabilizer
group H. Furthermore, since the H is itself an Abelian group
consisting of mutually orthogonal generators, it is contained
in the centralizer, i.e. we have H ⊂ N(H). Recall that
the stabilizer generators do not modify the state of valid
codewords. This in turn implies that errors which belong to
the stabilizer group, i.e. we have P ∈ H, do not corrupt
the transmitted codewords and therefore may be classified as
harmless undetected error patterns. This class of errors does
not have any classical counterpart. By contrast, those error
patterns, which lie in the subspace N(H)\H, are the harmful
undetected errors, which map one valid codeword onto another.
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Fig. 18: Error pattern classification for stabilizer codes.

Hence, as depicted in Fig. 18, quantum error patterns can be
classified as follows:

1) Detected Errors Patterns: These error patterns fall
outside the normalizer subspace, i.e. they satisfy P ∈
Gn \N(H).

2) Harmful Undetected Error Patterns: This class of
error patterns is defined as N(S) \ H.

3) Harmless Undetected Errors Patterns: These error
patterns fall in the stabilizer group H.

The class of harmless undetected error patterns makes
quantum codes ‘degenerate’ [126]. More specifically, error
patterns P and P ′ = giP are said to be degenerate, because
they differ only by the elements of the stabilizer group, which
are harmless. Consequently, both P as well as P ′ yield the
same output, as shown below:

P ′[|ψ〉] = giP[|ψ〉] = Pgi[|ψ〉]. (70)

Since gi[|ψ〉] = |ψ〉, we get:

P ′[|ψ〉] = P[|ψ〉]. (71)

This in turn implies that degenerate error patterns can be
rectified by the same recovery operation.

Let us consider the error patterns P = IIX and P ′ = g1P =
ZZX, where g1 is the stabilizer of the 3-qubit bit-flip repetition
code defined in Eq. (59). When these error patterns are applied
to the legitimate codeword of Eq. (35), we get:

IIX[α|000〉+ β|111〉] = α|001〉+ β|110〉, (72)

ZZX[α|000〉+ β|111〉] = α|001〉+ β|110〉.
Hence, P and P ′ are degenerate errors, since both error
patterns yield the same corrupted codeword. Furthermore,
degeneracy enhances the achievable capacity, because the
codewords are not corrupted by the harmless undetected error
patterns; hence, the impact of quantum impairments is reduced.
Equivalently, we may say that degeneracy enables a quantum
code to pack more information as compared to the underlying
classical design, because it can operate at a higher coding rate.

VI. QUANTUM-TO-CLASSICAL ISOMORPHISM

Based on the duality of QSCs and classical linear block
codes established in Section V, in this section we present
the isomorphism between these two regimes, which in turn
helps in constructing the quantum-domain versions of the
known classical codes. Explicitly, QSCs may be designed from

Pauli (F2)
2 GF(4)

I 00 0
X 01 1
Y 11 ω
Z 10 ω

Multiplication Bit-wise Addition Addition

Commutativity Symplectic Product Trace Inner Product

TABLE III: Quantum-to-classical isomorphism.

binary and quaternary classical codes using the quantum-to-
classical mappings of Table III, as detailed in Sections VI-A
and VI-B, respectively. Furthermore, this quantum-to-classical
isomorphism also allows us to use the classical PCM-based
syndrome decoding procedures for decoding QSCs.

A. Pauli-to-Binary Isomorphism

Recall from Section V that stabilizers constitute the coun-
terparts of the classical PCM. Based on this duality, QSCs can
be described using an equivalent binary PCM, which in turn
aids in designing quantum codes from the existing families
of classical codes. More specifically, QSCs can be completely
characterized in the binary formalism by an equivalent binary
PCM H derived from the associated stabilizer generators. The
rows of H correspond to the stabilizers, while the constituent
I, X, Y and Z Pauli operators of the stabilizers are mapped
onto a pair of binary digits as follows:

I → (00), X → (01), Z → (10), Y → (11), (73)

where a binary 1 at the first index represents a Z operator,
while a binary 1 at the second index represents an X operator.
The PCM H resulting from the Pauli-to-binary mapping of
Eq. (73) can also be expressed as:

H = (Hz|Hx) , (74)

where Hz and Hx are (n − k) × n binary matrices corre-
sponding to the Z and X operators, respectively. Let us recall
that the 3-qubit bit-flip repetition code relied on the stabilizers
g1 = ZZI and g2 = ZIZ. Consequently, the associated PCM
H is given by:

H =

(

1 1 0 0 0 0
1 0 1 0 0 0

)

, (75)

where Hx is an all-zero matrix, since g1 and g2 do not contain
any Pauli-X operators. Furthermore, the Hz of Eq. (75) is
identical to the PCM H of the classical repetition code given
in Eq. (38), hence both yield identical syndrome patterns in
Table I and Table II. Similarly, the PCM of the 3-qubit phase-
flip repetition code is:

H =

(

0 0 0 1 1 0
0 0 0 1 0 1

)

, (76)
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+ 00 01 10 11
00 00 01 10 11
01 01 00 11 10
10 10 11 00 01
11 11 10 01 00

TABLE IV: (F2)
2 Addition.

where we have g1 = XXI and g2 = XIX, while that of
Shor’s code is given in Eq. (77).

H =





















1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1





















.

(77)
Hence, an [n, k] QSC, having (n−k) stabilizers, can be char-
acterized by a binary PCM of size (n−k)× 2n. Furthermore,
the equivalent classical coding rate Rc can be determined as
follows:

Rc =
2n− (n− k)

2n

=
n+ k

2n

=
1

2

(

1 +
k

n

)

=
1

2
(1 +RQ) , (78)

where RQ is its quantum coding rate. Based on Eq. (78),
the equivalent classical coding rate of the rate-1/3 quantum
repetition code is 2/3, while that of Shor’s rate-1/9 code is
5/9.

The binary formalism of Eq. (73) transforms the multi-
plication of Pauli operators into the bit-wise addition of the
corresponding binary representation. For example, multiplying
the set of Pauli operators {I,X,Z,Y} with Pauli-X is equiv-
alent to the second column of Table IV, if the Pauli operators
are mapped onto (F2)

2 according to Eq. (73). Similarly, the
commutative property of stabilizers in the Pauli formalism
implies that the rows of the PCM H must be orthogonal to
each other with respect to symplectic product (also referred
to as a twisted product) in the binary formalism. Explicitly, if
the ith row of H is denoted as Hi = (Hzi |Hxi

) following the
notation of Eq. (74), then the commutativity of the stabilizers
gi and gi′ is transformed into the symplectic product of rows
Hi and Hi′ , which is computed as follows:

Hi ⋆Hi′ = (Hzi ·Hx
i′
+Hz

i′
·Hxi

) mod 2. (79)

The resultant symplectic product yields a value of zero, if
the number of different non-Identity operators (X, Y or Z)
in the stabilizers gi and gi′ is even; hence, satisfying the
commutativity criterion. Furthermore, since all stabilizers must
be commutative, the symplectic product must be zero for all

n

n

Z Z Z Z Z XX X X X

Fig. 19: Effective error P corresponding to the n-qubit Pauli
error P .

rows of H, i.e. the PCM H should satisfy:

HzH
T
x +HxH

T
z = 0 mod 2. (80)

This in turn implies that any pair of classical binary codes
having the PCMs Hz and Hx and satisfying the symplectic
product of Eq. (80) may be used for constructing a valid QSC.

The symplectic product of Eq. (80) may also be exploited
for computing the syndrome of a QSC in the binary domain,
for example during the PCM-based syndrome decoding. More
specifically, the Pauli-to-binary isomorphism of Eq. (73) trans-
forms an n-qubit Pauli error P ∈ Gn into an effective error
vector P of length 2n. Explicitly, analogous to the H of
Eq. (74), the effective error vector P may be expressed as
P = (Pz|Px), where Pz and Px denote the Pauli-Z and Pauli-
X errors, respectively. More precisely, a 1 at the tth index of
Pz denotes a Pauli-Z (phase-flip) error on the tth qubit, while
a 1 at the tth index of Px represents the occurrence of the
Pauli-X (bit-flip) error on the tth qubit. Similarly, the Pauli-Y
(bit-and-phase-flip) error on the tth qubit yields a 1 at the tth
index of Pz as well as Px. Finally, the syndrome of a QSC
can be computed in the binary formalism using the symplectic
product and the effective error vector P as follows:

s = H ⋆ PT =
(

HzP
T
x +HxP

T
z

)

mod 2, (81)

where the Hz and Hx are used for correcting bit-flip and
phase-flip errors, respectively, as previously discussed in the
context of 3-qubit bit-flip and phase-flip repetition codes. The
resultant syndrome has either a value of 0 or 1. Thus, the
quantum-domain syndrome processing may be carried out in
the binary domain using the PCM H and the effective error
P . This in turn implies that the quantum decoding process is
equivalent to the syndrome decoding of the equivalent classical
code relying on the PCM H [146]. However, since quantum
codes are degenerate, as discussed in Section V, quantum
decoding aims for estimating the most probable error coset,
while the classical syndrome decoding estimates the most
probable error.

B. Pauli-to-Quaternary Isomorphism

Analogous to the Pauli-to-binary isomorphism, the Pauli-
to-quaternary isomorphism facilitates the design of quantum
codes from the existing classical quaternary codes. Explicitly,
the I, X, Y and Z Pauli operators may be transformed into
the elements of Galois Field GF(4) using the mapping given
below:

I → 0, X → 1, Z → ω, Y → ω, (82)
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+ 0 1 ω ω
0 0 1 ω ω
1 1 0 ω ω
ω ω ω 0 1
ω ω ω 1 0

TABLE V: GF(4) Addition.

× 0 1 ω ω
0 0 0 0 0
1 0 1 ω ω
ω 0 ω ω 1
ω 0 ω 1 ω

TABLE VI: GF(4) Multiplication.

where 0, 1, ω and ω are the elements of GF(4). Furthermore,
the multiplication operation in the Pauli domain is equivalent
to the addition operation in GF(4), while the commutativity
(symplectic product) criterion in the Pauli domain is equivalent
to the trace13 inner product [85] in GF(4). The associated
additive and multiplicative rules of GF(4) are listed in Table V
and Table VI14, respectively. To elaborate further, multiplying
the Pauli operators {I,X,Z,Y} with Pauli-X is equivalent to
adding the GF(4) element 1 (corresponding to Pauli-X) to each
element of GF(4), as done in the second column of Table V.
On the other hand, the commutative relationship between two

GF(4) elements Â and B̂ may be established with the help of
the trace inner product as follows15:

Tr〈Â, B̂〉 = Tr(Â× B̂) = 0, (83)

where 〈, 〉 denotes the Hermitian inner product, while B̂ is

the conjugate16 of B̂. Moreover, Tr(0) = Tr(1) = 0, while
Tr(ω) = Tr(ω) = 1. Explicitly, both the Hermitian inner
product and the trace inner product between the elements of
GF(4) are tabulated in Table VII and Table VIII, respectively.

13The trace operator of GF(4) maps x onto (x+ x), where x denotes the
conjugate of x [91].

14The addition and multiplication rules for GF(p), having a prime p, are
the same as the modulo p addition and multiplication, while the rules for
GF(pm), having m > 1, do not follow the conventional rules for modulo
pm addition and multiplication. For example, the addition of the elements of
GF(4) is equivalent to the bitwise modulo 2 addition of the equivalent 2-bit
patterns. Hence, Table V may be obtained by mapping the 2-bit patterns of
Table IV onto the corresponding GF(4) elements.

15GF(4) variables are denoted with aˆon top, e.g. x̂.
16The conjugate operation of GF(4) is defined as x = x2 [91]. Conse-

quently, conjugation has no impact on the GF(4) elements 0 and 1, while the
elements ω and ω are swapped upon taking the conjugate.

〈, 〉 0 1 ω ω
0 0 0 0 0
1 0 1 ω ω
ω 0 ω 1 ω
ω 0 ω ω 1

TABLE VII: GF(4) Hermitian inner product.

tr〈, 〉 0 1 ω ω
0 0 0 0 0
1 0 0 1 1
ω 0 1 0 1
ω 0 1 1 0

TABLE VIII: GF(4) trace inner product.

If a QSC is characterized by the classical PCM Ĥ in the
quaternary domain, then the commutativity constraint of the
stabilizers gi and g′i is transformed into the trace inner product

of the ith and i′th row of Ĥ. Explicitly, this may be formulated
as:

Ĥi ⋆ Ĥi′ = Tr〈Ĥi, Ĥi′〉 = Tr

(

n
∑

t=1

Ĥit × Ĥi′t

)

= 0, (84)

where Ĥit is the element in the ith row and tth column of Ĥ.

Let us now prove the equivalence of Eq. (79) and Eq. (84),
since both these equations correspond to the commutativity
requirement. Given Hi = (Hzi ,Hxi

) and the mapping of

Eq. (82), Ĥi may be expressed as:

Ĥi = ωHzi +Hxi
. (85)

Substituting Eq. (85) into Eq. (84) yields:

Ĥi ⋆ Ĥi′ = Tr〈(ωHzi +Hxi
), (ωHz

i′
+Hx

i′
)〉

= Tr
(

(ωHzi +Hxi
) (ωHz

i′
+Hx

i′
)
)

= Tr
(

HziHz
i′
+ ωHziHx

i′
+ ωHxi

Hz
i′
+Hxi

Hx
i′

)

.
(86)

Recall that Tr(1) = 0 and Tr(ω) = Tr(ω) = 1. Therefore,
Eq. (86) reduces to:

Ĥi ⋆ Ĥi′ = HziHx
i′
+Hxi

Hz
i′
, (87)

which is the same as Eq. (79). Consequently, analogous to
Eq. (81), the syndrome in the quaternary domain is computed
as:

si = Tr(ŝi) = Tr

(

n
∑

t=1

Ĥit × P̂ t

)

, (88)

where si is the syndrome corresponding to the ith row of Ĥ

and P̂t is the tth element of P̂ , which represents the error
inflicted on the tth qubit.

Any arbitrary classical quaternary linear code, which is self-
orthogonal with respect to the trace inner product of Eq. (84),
can be used for constructing a QSC. Since a quaternary
linear code is closed under multiplication by the elements of
GF(4), this condition reduces to satisfying the Hermitian inner
product, rather than the trace inner product [91]. This can be
proved as follows.

Let C be a classical linear code in GF(4) having codewords
u and v. Furthermore, let us assume that:

〈u, v〉 = α+ βω. (89)
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Fig. 20: Syndrome processing block of Fig. 15.

For the sake of satisfying the symplectic product, we must
have:

Tr〈u, v〉 = 0. (90)

Since Tr(ω) = 1, Eq. (90) is only valid, when β is zero
in Eq. (89). Furthermore, since the code C is GF(4)-linear,
Eq. (90) leads to:

Tr〈u, ωv〉 = 0, (91)

which in turn implies that α should also be zero in Eq. (89).
Hence, for a classical GF(4)-linear code, the Hermitian inner
product of Eq. (89) must be zero, when the trace inner product
of Eq. (90) is zero.

To conclude, the stabilizers may be mapped onto the equiv-
alent binary or quaternary representations, as summarized in
Table III. These mappings in turn help in designing quantum
codes from the existing classical codes, as discussed further in
the next section. Furthermore, since a QSC can be mapped onto
an equivalent classical binary or quaternary PCM, classical
PCM-based syndrome decoding may be invoked during the
quantum decoding process. More explicitly, the ‘syndrome
processing’ block of Fig. 15 may be expanded, as shown
in Fig. 20. The process begins with the computation of the

syndrome of the received sequence |ψ̂〉 using the stabilizer
generators, which collapse to a binary 0 or 1 upon mea-
surement. The binary syndrome sequence s is then fed to a
classical PCM-based syndrome decoder, which operates over
the equivalent classical PCM associated with the QSC for

estimating the equivalent channel error P̃ (or
˜̂
P in quater-

nary domain). The classical PCM-based syndrome decoder of
Fig. 20 is exactly the same decoder, which we would use
for any conventional classical code, with the exception of the
following two differences:

1) In contrast to the syndrome of a classical code, which
is the product of the PCM and the transpose of the
channel error (HPT ), the syndrome of a quantum code
is computed using the symplectic product of Eq. (81)
(or the trace inner product of Eq. (88)).

2) The conventional classical decoding aims for estimating
the most probable error, given the observed syndrome,
while quantum decoding aims for estimating the most
probable error coset, which takes into account the de-
generacy of quantum codes, as discussed in Section V.

Finally, the binary-to-Pauli mapping of Eq. (73) (or quaternary-
to-Pauli mapping of Eq. (82)) is invoked for mapping the
estimated binary (or quaternary) error onto the equivalent Pauli

error P̃ .

CSS

Non−CSS

EA

Dual−Containing

Non−Dual−

Containing

S
ta

b
il

iz
er

 C
o

d
es

H = (Hz|Hx)

HzH
T
x +HxH

T
z = 0

HzH
T
x +HxH

T
z 6= 0

H
′
zH

′T
x = 0

H
′
zH

′T
x 6= 0 or

H
′
z = H

′
x

H
′
z 6= H

′
x

H =

(

H
′
z 0
0 H

′
x

)

Fig. 21: Taxonomy of Stabilizer Codes (CSS: Calderbank-
Shor-Steane, EA: Entanglement-Assisted).

VII. TAXONOMY OF STABILIZER CODES

The quantum-to-classical isomorphism of Section VI pro-
vides a solid theoretical framework for building quantum codes
from the known classical codes, which have already found their
way into commercial applications. Particularly, quantum codes
can be designed from a pair of arbitrary classical binary codes,
if they meet the symplectic criterion, or from arbitrary classical
quaternary codes, if they satisfy the Hermitian inner product.
Continuing further our discussions, in this section we present
the taxonomy of stabilizer codes with the aid of Fig. 21, which
is based on the structure of the underlying equivalent classical
PCM H.

A. Calderbank-Shor-Steane Codes

Calderbank-Shor-Steane (CSS) codes [79]–[81] is a class
of stabilizer codes constructed from a pair of binary classical
codes. Specifically, the family of CSS codes may be defined
as:

An [n, k1 − k2] CSS code can be designed from the binary
linear block codes C1(n, k1) and C2(n, k2), if the code space
of C1 subsumes that of C2 (C2 ⊂ C1). Furthermore, if both C1

as well as the dual of C2, i.e. C⊥
2 , exhibit a minimum Hamming

distance of dmin, then the resultant CSS code also exhibits a
minimum distance of dmin; hence, it is capable of concurrently
correcting (dmin −1)/2 bit-flips as well as (dmin −1)/2 phase-
flips.

Explicitly, analogous to Shor’s code, a CSS code indepen-
dently corrects bit-flip and phase-flip errors. More specifically,
the binary code C1 is invoked for correcting bit-flips, while
the code C⊥

2 is used for phase-flip correction. Hence, if H′
z
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and H′
x are the PCMs of C1 and C⊥

2 , respectively, then the
resultant CSS code has the following PCM:

H = [Hz|Hx] =

(

H′
z 0

0 H′
x

)

, (92)

where we have Hz =

(

H′
z

0

)

, Hx =

(

0
H′
x

)

, while H′
z and

H′
x are (n− k1)×n and k2 ×n binary matrices, respectively.

Furthermore, since C2 ⊂ C1, the symplectic condition of
Eq. (80) is reduced to:

H′
zH

′T
x = 0. (93)

Hence, the process of designing a QSC is reduced to finding a
pair of binary codes whose PCMs conform to the symplectic
criterion of Eq. (93). Since the resultant PCM of Eq. (92) has
(n − k1 + k2) rows, the quantum code encodes (k1 − k2)
information qubits into n qubits. Moreover, if we have H′

z =
H′
x, then the resultant code is called a dual-containing (or self-

orthogonal) code having Hz′H′T
z = 0, which is equivalent to

C⊥
1 ⊂ C1. Explicitly, in case of dual-containing CSS codes,

C2(n, k2) is the dual code of C1(n, k1). Therefore, we have
k2 = (n − k1) and the resultant dual-containing CSS codes
encodes (k1−k2) = (2k1−n) qubits into n coded qubits. We
classify the remaining CSS constructions, having H′

z 6= H′
x,

as non-dual-containing CSS codes.

An [n, k1 − k2] CSS code, relying on the binary codes C1

and C⊥
2 , is implemented by finding the unique cosets17 of

C2 in C1, so that each of the 2k1−k2 superimposed state can
be mapped onto a unique coset of C2 in C1. These unique
cosets are in turn derived by adding (bit-wise modulo-2) each
codeword of C1 to the code space of C2. More specifically, if
x1 ∈ C1 and x2 ∈ C2, then the normalized addition operation
can be formulated as:

|x1 + C2〉 =
1

√

|C2|
∑

x2∈C2

|x1 + x2〉. (94)

Since the cardinality of C1 is |C1| = 2k1 , while that of C2

is |C2| = 2k2 , we get |C1|/|C2| = 2k1−k2 unique cosets of
C2 in C1. Consequently, each of the 2k1−k2 (k1 − k2)-qubit
orthogonal quantum state can be mapped onto a superposition
of the codewords of the unique coset.

Let us now consider the construction of Steane’s [7, 1]
code, which is derived from the dual-containing classical (7, 4)

17Assume C1 = (0, 1, 2, 3) with k1 = 2 and C2 = (0, 2) with k2 = 1,
modulo 4 addition yields following cosets:

0 + C2 ≡ (0, 2) = C2,

1 + C2 ≡ (1, 3) = 1 + C2,

2 + C2 ≡ (2, 0) = C2,

3 + C2 ≡ (3, 1) = 1 + C2.

Hence, resulting in two different cosets of C2 in C1 i.e. (0, 2) and (1, 3).
Equivalently, we may say that the two unique cosets (0, 2) and (1, 3) of C2

together constitute the code space of C1.

Coset 1 Coset 2

0000000 1111111
0111001 1000110
1011010 0100101
1100011 0011100
1101100 0010011
1010101 0101010
0110110 1001001
0001111 1110000

TABLE IX: Unique cosets of C⊥
1 in C1.

Hamming code having the PCM:

H =

(

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

)

. (95)

The PCM H of Eq. (95) yields HHT = 0, hence lending itself
to constructing a dual-containing CSS code. More specifically,
C1 is the (7, 4) Hamming code, while C2 is its dual code,

i.e. C2 = C⊥
1 , having the parameters (7, 3). Since HHT = 0,

the code space of C2 is contained in that of C1, i.e. we have
C2 ⊂ C1. Furthermore, both C1 and C⊥

2 = C1 can correct a
single error. Consequently, a single-error correcting CSS code
can be constructed by finding the unique cosets of C⊥

1 in C1

using Eq. (94). This results in two unique cosets, which are
listed in Table IX. These two cosets together yield the code
space of the (7, 4) Hamming code. The two orthogonal states
|0〉 and |1〉 of the single qubit information word are hence
encoded as follows:

|0〉 ≡ 1√
8
(|0000000〉+ |0111001〉+ |1011010〉+ |1100011〉

+ |1101100〉+ |1010101〉+ |0110110〉+ |0001111〉),
|1〉 ≡ 1√

8
(|1111111〉+ |1000110〉+ |0100101〉+ |0011100〉

+ |0010011〉+ |0101010〉+ |1001001〉+ |1110000〉).
(96)

In other words, |0〉 and |1〉 are the equally weighted superpo-
sitions of all the codewords of the two cosets of Table IX.
Furthermore, H′

z and H′
x of the resultant quantum code

space are equivalent to the binary PCM of the Hamming
code (Eq. (95)). Hence, the associated bit-flip and phase-flip
detecting stabilizers of the [7, 1] Steane’s code are as follows:

g1 = ZZIZZII

g2 = ZIZZIZI

g3 = IZZZIIZ

g4 = XXIXXII

g5 = XIXXIXI

g6 = IXXXIIX. (97)

We may observe in Eq. (97) as well as in Eq. (92) that
the bit-flip and phase-flip detecting stabilizers (or equivalently
syndromes) of a CSS-type quantum code are independent.
Therefore, bit-flip and phase-flip estimation may be carried
out independently by two separate classical syndrome decoders
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using H′
z and H′

x, respectively, as illustrated in Fig. 22.
Furthermore, when the simplified decoder of Fig. 22 is in-

Syndrome

Decoder

Syndrome

Decoder

Pauli-Z

Syndromes P̃x

Pauli-X

Syndromes P̃z

for H′
z

for H′
x

Fig. 22: Syndrome decoder for CSS-type Quantum Codes.

voked, the performance of CSS codes observed in the face
of the depolarizing channel of Eq. (22) is isomorphic to
their performance over two independent phase-flip and bit-
flip channels, where each has a marginalized depolarizing
probability of 2p/3. Hence, the QBER performance of CSS
codes may be approximated by adding together the BERs of
the constituent binary codes. More explicitly, given that pxe
and pze are the classical BERs for H′

z and H′
x, respectively,

the resultant CSS code exhibits a QBER of:

QBER = pxe + pze − pxep
z
e ≈ pxe + pze, (98)

which is equivalent to 2pze for a dual-containing CSS code
having H′

x = H′
z .

B. Non-CSS Codes

We observed in the previous section that CSS codes indepen-
dently correct bit-flip and phase-flip errors. This in turn results
in a low coding rate. By contrast, non-CSS stabilizer codes
are capable of exploiting the redundancy more efficiently,
since they jointly correct bit-flip and phase-flip errors. The
PCM of a non-CSS code assumes the general structure of
Eq. (74). Consequently, a pair of binary PCMs conforming
to the symplectic product criterion of Eq. (80) or a classical
quaternary PCM satisfying the trace inner product of Eq. (84)
may be used for designing a non-CSS stabilizer code.

Calderbank, Rains, Shor and Sloane conceived a special
class of non-CSS codes, called Calderbank-Rains-Shor-Sloane
(CRSS) codes, which are constructed from the known classical
quaternary codes as follows [91]:

An [n,k] QSC can be designed in the quaternary domain
from a classical self-orthogonal (under the Hermitian inner
product) GF(4)-linear block code C(n, (n − k)/2). Further-
more, if the dual (also called orthogonal) code C⊥(n, (n +
k)/2) exhibits a minimum Hamming distance of dmin, then

the resultant non-CSS code also exhibits a minimum dis-
tance of dmin; hence, it is capable of concurrently correcting
(dmin − 1)/2 bit-flips as well as (dmin − 1)/2 phase-flips.

Based on this formalism, the PCM of the resultant CRSS
code is characterized as:

Ĥ =

(

Ĥc

ωĤc

)

, (99)

where Ĥc is the PCM of the dual code C⊥(n, (n+k)/2). For
example, there exists a classical self-orthogonal GF(4)-linear
code C(5, 2), whose dual code C⊥(5, 3) is a Hamming code

having the PCM Ĥc given by [151]:

Ĥc =

(

0 ω ω ω ω
ω 0 ω ω ω

)

. (100)

Consequently, the (5, 1) quantum Hamming code can be
constructed as:

Ĥ =







0 ω ω ω ω
ω 0 ω ω ω
0 1 ω ω 1
1 0 1 ω ω






. (101)

Using the Pauli-to-GF(4) mapping of Eq. (82), the PCM Ĥ
of Eq. (101) is mapped onto the stabilizer generators listed
below:

g1 = IYZZY

g2 = YIYZZ

g3 = IXYYX

g4 = XIXYY. (102)

Hence, while a single-error correcting CSS-type code has a
coding rate of 1/7, a single-error correcting non-CSS code
exhibits an improved coding rate of 1/5. The resultant codes
may be decoded by invoking a classical non-binary syndrome
decoder or a binary syndrome decoder operating over the
binary PCM of Eq. (74), which exploit the correlation between
the bit-flip and phase-flip errors, hence facilitating the joint
decoding of bit-flip and phase-flip errors. This in turn provides
enhanced decoding performance, albeit at the cost of an
increased decoding complexity.

C. Entanglement-Assisted Codes

Let us recall that QSCs may be constructed from the
classical binary and quaternary codes only if the constituent
classical codes conform to the symplectic criterion of Eq. (80).
Consequently, while every QSC may have a classical coun-
terpart, we cannot claim that every classical code has a
stabilizer-based quantum version. Furthermore, the stringent
symplectic criterion may result in various design issues, such
as the unavoidable short cycles in QLDPC codes and the
non-recursive nature of non-catastrophic QCCs. For the sake
of overcoming these limitations, the entanglement-assisted
stabilizer formalism of [105], [108] was conceived, which
relies on entangled qubits pre-shared with the receiver over
a noiseless channel. Explicitly, the EA formalism helps in
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transforming a set of non-commuting Pauli generators into a
set of commuting generators, which in turn constitute valid
stabilizer codes. Consequently, when the underlying classical
codes do not satisfy the symplectic criterion, the EA formalism
is invoked for making the resultant stabilizers commutative.

Fig. 23 shows the system model of a quantum communi-
cation system relying on an Entanglement-Assisted Quantum
Stabilizer Code (EA-QSC). Explicitly, an [n, k, c] EA-QSC
encodes a k-qubit information word |ψ〉 into an n-qubit

codeword |ψ〉 with the help of (n− k− c) auxiliary qubits in
state |0〉 and c pre-shared entangled qubits (ebits). Explicitly,
ebits may be created in the Bell state |φ+〉, expressed as:

|φ+〉 = |00〉TXRX + |11〉TXRX

√
2

, (103)

so that the first qubit is retained at the transmitter, while the
associated entangled qubit is sent to the receiver before actual
transmission commences, for example during off-peak hours,
when the channels are under-utilized. The notations TX and
RX in Eq. (103) are used to identify the transmitter’s and
receiver’s half of the ebit, respectively. It is generally assumed
that the pre-sharing of ebits takes place over a noiseless
channel. Furthermore, as illustrated in Fig. 23, the transmitter
only utilizes the transmitter’s half of the ebits for encoding
the information word |ψ〉 into the codeword |ψ〉. Finally, the
encoded information is sent over a noisy quantum channel.

At the receiver, the received noisy codeword |ψ̂〉 is combined
with the receiver’s half of the c ebits during the decoding
process. Specifically, the stabilizers of an EA-QSC jointly act

on |ψ̂〉 and the receiver’s ebits for computing the syndrome
vector, which is then fed to a classical syndrome decoder for

estimating the error pattern P̃ , as previously shown in Fig. 20.
The rest of the processing at the receiver is identical to that
of the unassisted QSC of Fig. 15.

The Bell state of Eq. (103) has unique properties, which
facilitate the mapping of a set of non-commuting generators
into a set of commuting generators. More explicitly, the 2-qubit
commuting generators XTXXRX and ZTXZRX stabilize the
state |φ+〉, i.e. we have:

[XTXXRX ,ZTXZRX ] = 0. (104)

However, the Pauli operators acting on the individual qubits
anti-commute with each other, i.e. we have:

[XTX ,ZTX ] 6= 0,

[XRX ,ZRX ] 6= 0. (105)

Therefore, if we have a pair of non-commutative generators
XTX and ZTX , which only act on the transmitter’s ebit, then
these generators can be transformed into a pair of commuting
generators by appropriately augmenting them with an addi-
tional operator acting on the receiver’s ebit. Explicitly, the
operator acting on the receiver’s ebits is specifically chosen
for ensuring that the resultant 2-qubit generators have an even
number of indices, which have different non-identity operators;
hence, resolving the anti-commutativity of the initial single
qubit operators.

Let us now construct an EA-QSC from two binary codes
having the PCMs18:

Hz =







0 1 0 0
0 0 0 0
1 1 1 0
0 1 1 1






, (106)

and:

Hx =







1 0 1 0
1 1 0 1
1 0 0 1
1 1 1 0






. (107)

The PCMs Hz and Hx may be concatenated for constructing
a non-CSS code having:

H =







0 1 0 0 1 0 1 0
0 0 0 0 1 1 0 1
1 1 1 0 1 0 0 1
0 1 1 1 1 1 1 0






. (108)

Unfortunately, the PCM of Eq. (108) does not meet the sym-
plectic product criterion of Eq. (80). Furthermore, the PCM H
may be transformed into the following non-commutative Pauli
generators using the Pauli-to-binary mapping of Eq. (73):

HQ =







X Z X I
X X I X
Y Z Z X
X Y Y Z






. (109)

Explicitly, the first two generators (or rows) of HQ anti-
commute, while all other generators (or rows) commute with
each other. This is because the first two generators have a
single index having different non-Identity operators. In other
words, only the operators acting on the second qubit anti-
commute, while the operators individually acting on all other
qubits commute. For the sake of making the generators of
Eq. (109) commutative, the first two rows of HQ may be
augmented with a pair of anti-commuting operators, as shown
below:

HQ =







X Z X I Z
X X I X X
Y Z Z X I
X Y Y Z I






, (110)

where the operators to the left of the vertical bar (|) act on
the n-qubit transmitted codewords, while those on the right of
the vertical bar act on the receiver’s half of the ebits. Hence,
only a single ebit is required in this design example.

VIII. DESIGN EXAMPLES

We may conclude from the above discussions that the
stabilizer formalism is a useful framework for exploiting the
known classical coding families. In this section, we extend our
discussions to the two widely used channel coding families,
i.e. the BCH codes (Section VIII-A) and the convolutional
codes (Section VIII-B), emphasizing the duality between their
classical and quantum versions.

18This is an arbitrary, random example only conceived for illustrating the
construction of EA codes from the known classical codes. The associated
classical/quantum code may not have good error correction capabilities.
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Fig. 23: System Model: Quantum communication system relying on an entanglement-assisted quantum stabilizer code

.

A. Bose-Chaudhuri-Hocquenghem Codes

1) Classical Bose-Chaudhuri-Hocquenghem Codes [134]:
Bose-Chaudhuri-Hocquenghem (BCH) codes are classified as
maximum minimum-distance multiple-error correcting cyclic
block codes. A classical BCH code denoted as BCH(n, k, dmin)
encodes k ≥ (n−mt) information bits into n-bit codewords,
where n = 2m − 1, so that the resultant code space has
an odd minimum Hamming distance of dmin, hence it is
capable of correcting t = (dmin − 1)/2 errors. Furthermore,
BCH codes can be both systematic as well as non-systematic.
However, systematic BCH codes are known to outperform
their non-systematic counterparts [134]. This is because they
can exploit their error-detection capability for disabling the
decoding operations, when this would result in correcting
the wrong symbols owing to having more than t errors. In
such instances, the systematic BCH decoder simply retains
the systematic part of the codeword. Unfortunately, the non-
systematic decoder does not have separate information and
parity segments, hence it would correct the wrong symbols,
when it is overloaded by more than t errors. This causes even
more errors after decoding than we had at the channel’s output.

A systematic binary BCH code encodes k information bits
into n coded bits by appending (n − k) parity bits to the
block of k information bits. The parity bits are computed from
the information bits based on the generator polynomial g(x),
which is given by:

g(x) = g0 + g1x+ g2x
2 + · · ·+ gn−kx

n−k. (111)

As detailed in [134], [154], the systematic encoder operates by
first shifting the information polynomial d(x) to the highest
order position of the codeword c(x) by multiplying d(x)
with x(n−k) and then attaching the parity segment to it.
Explicitly, the parity symbols denoted by the polynomial p(x)
are defined according to the generator polynomial g(x), so that
the resulting codeword c(x) is a valid codeword. The overall
systematic encoding process may be summarized as:

c(x) = x(n−k).d(x) + p(x), (112)

where p(x) is defined as:

p(x) = −Rem

[

x(n−k).d(x)

g(x)

]

, (113)

for the sake of ensuring that c(x) constitutes a valid codeword,
hence yielding a zero-valued remainder upon division by the

Switch 1

Switch 2

r1r0 rn−k−2

g0 g1 gn−k−2 gn−k−1

c(x)

. . .

d(x)

rn−k−1

gn−k

Fig. 24: Schematic of the systematic BCH(n, k, dmin) encoder.

generator polynomial g(x), i.e. we have:

Rem

[

c(x)

g(x)

]

= Rem

[

x(n−k).d(x) + p(x)

g(x)

]

= Rem

[

x(n−k).d(x)

g(x)

]

+ Rem

[

p(x)

g(x)

]

= 0,

(114)

since,

Rem

[

p(x)

g(x)

]

= p(x), (115)

according to Eq. (113). The corresponding polynomial multi-
plications and divisions of Eq. (112) and Eq. (113), respec-
tively, may be carried out by low-complexity shift register
based operations, as exemplified below.

The encoder of a systematic BCH code may be implemented
using shift registers, as depicted in Fig. 24, where ⊗ denotes
the multiplication operation, while ⊕ is the modulo-2 addition.
Specifically, the information bits d(x) are encoded into the
coded bits c(x) as follows:

1) Switch 1 is closed during the first k time instants (or
clock cycles), hence allowing the information bits d(x)
to flow into the (n − k) shift registers according to
the rules defined by the generator polynomial g(x).
Explicitly, the contents of the shift registers after the
kth time instant constitute the parity bits.

2) Concurrently, Switch 2 is in the down position, so that
the k information bits d(x) constitute the first k bits of
c(x).

3) After k time instants, Switch 1 is opened, while Switch
2 is moved to the upper position. This clears the shift
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r1 r2 r3

c(x)

d(x)

r0

Fig. 25: Encoder of systematic BCH(15, 11, 3).

Index Input State (r0r1r2r3) Output

Bit Binary Decimal Bit

0 - 0000 0 -

1 1 1100 12 1
2 0 0110 6 0
3 0 0011 3 0
4 0 0001 1 0
5 1 1100 12 1
6 1 1010 10 1
7 1 1001 9 1
8 0 0100 4 0
9 0 0010 2 0
10 1 1101 13 1
11 1 1010 10 1
12 - 0101 5 0
13 - 0010 2 1
14 - 0001 1 0
15 - 0000 0 1

TABLE X: BCH(15, 11, 3) encoding process for d =
11001110001 (d(x) = 1 + x + x4 + x5 + x6 + x10), which
yields the codeword c = 101011001110001 (c(x) = x2+x4+
x5 + x8 + x9 + x10 + x14).

registers by moving their contents to the output c(x).

Let us consider the BCH(15, 11, 3) code having the gener-
ator polynomial19:

g = 23octal

= 10011bin,

g(x) = x4 + x+ 1. (116)

The associated encoding circuit of Fig. 25 can be easily derived
from Fig. 24 based on the generator polynomial of Eq. (116).
We may observe in Eq. (116) that the coefficients can only have
a value of 1 or 0. Consequently, the multiplier is replaced by a
direct hard-wire connection, if the corresponding coefficient is
1, while no connection is made, when the coefficient is 0. Let
us assume an 11-bit input sequence d = 11001110001, which
may also be represented as d(x) = 1+x+x4+x5+x6+x10.
The encoding process proceeds as follows:

1) The shift registers are initialized to the all-zero state.
During the first k = 11 time instances, when the Switch
1 is closed, the input bits flow into the shift registers
of Fig. 25. The resultant states are tabulated in Table X
at each time instant.

19The generator polynomial g(x) is often represented by an octal number,
so that when it is converted to the binary notation, the right-most bit constitutes
the coefficient of x0, i.e. the zero-degree coefficient.
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Fig. 26: State transition diagram for BCH(15, 11, 3).

2) Furthermore, since Switch 2 is downward position for
the first k = 11 time instances, the coded bits of c(x)
are the same as the information bits d(x).

3) Thereafter, since Switch 1 is opened and Switch 2 is
moved to the upper position, the values within the shift
registers represent the coded bits, as demonstrated in
Table X. Eventually, the shift registers are returned to
the initial all-zero state.

Equivalently, the encoding process of Table X may also be
represented by using the state transition diagram of Fig. 26,
which shows all possible transitions for the BCH encoder of
Fig. 25. In its conceptually simplest form, the decoding relies
on a simple decoding table, which has a total of 215 = 32768
entries and 211 = 2048 legitimate codewords. Since this code
has dmin = 3, the received corrupted codeword is readily
corrected in case of a single error, but the wrong legitimate
codeword is selected in case of two errors. The state transition
diagram of Fig. 26 also facilitates trellis decoding [62] of
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Fig. 27: Coding gain versus coding rate for various families
of BCH codes at a BER of 10−6 over AWGN channel [134].
Berlekamp-Massey algorithm was invoked for decoding.

BCH codes. However, the number of trellis states increases
exponentially with (n−k), since the trellis has a total of 2(n−k)

states. As an alternative strategy, the Berlekamp-Massey algo-
rithm [53]–[56] and Chase algorithm [60] are widely used for
efficiently decoding BCH codes. Fig. 27 portrays the coding
gain versus coding rate trend at a BER of 10−6 for different-
rate BCH codes relying on the same codeword length, i.e.
for n = (15, 31, 63, 127). We may observe in Fig. 27 that
the coding gain increases upon increasing the coding rate
(or equivalently increasing k) until it reaches the maximum
value. More specifically, the maximum coding gain is typically
achieved when the coding rate is between 0.5 and 0.6.

2) Quantum Bose-Chaudhuri-Hocquenghem Codes: Quan-
tum BCH codes [89]–[94] can be derived from the classical
dual-containing binary BCH codes as well as self-orthogonal
quaternary BCH codes. In this section, we will detail the
construction of a dual-containing BCH code, based on our
discussions of Section VII-A.

Let us recall from Section VII-A that if C is the classical
code specified by the PCM H and having the dual code C⊥,
whose code space is subsumed by that of C (C⊥ ⊂ C), then
the resultant [n, k′] dual-containing CSS code, having k′ =

(2k−n), maps each of the 2k
′

superimposed states of a k′-qubit
information word onto a unique coset of the dual code C⊥ in
the code space of C. The cosets of C⊥ in C may be obtained
by adding a legitimate codeword of C to all the codewords
of C⊥, as previously shown in Eq. (94). However, only those
codewords of C generate a unique coset of C⊥, which do not
differ by an element of C⊥. Explicitly, the codewords x1 and
x′1 of C are said to differ by an element of C⊥, if their bit-wise
modulo-2 addition yields a codeword of C⊥, i.e. x1+x

′
1 = x2,

where x2 ∈ C⊥. Consequently, such codewords of C yield the
same coset of C⊥.

Let us elaborate on this by constructing the single-error cor-
recting QBCH[15, 7] code from the dual-containing classical
BCH(15, 11) code of Fig. 25, whose PCM is:

H =






1 0 0 0 1 1 1 1 0 1 0 1 1 0 0
0 1 0 0 0 1 1 1 1 0 1 0 1 1 0
0 0 1 0 0 0 1 1 1 1 0 1 0 1 1
0 0 0 1 1 1 1 0 1 0 1 1 0 0 1






.

(117)

The encoder of QBCH[15, 7] may be derived using the method
conceived by Mackay et al. in [146], which proceeds as
follows:

1) The classical dual-containing PCM H is first trans-

formed into the matrix H̃ = [I(n−k)|P] using elemen-
tary row operations as well as column permutations.
Explicitly, the elementary row operations include row
permutations and addition of one row to the other. Since
H is an (n−k)×n matrix, the resultant matrix I(n−k)
has dimensions (n − k) × (n − k), while P is an
(n−k)×k binary matrix. For the PCM H of Eq. (117),

we have H̃ = H.
2) As a next step, apply row operations to P so that it is

reduced to P̃ = [I(n−k),Q], where Q is an (n−k)×k′
binary matrix. Therefore, we get

P̃ =







1 0 0 0 1 1 1 1 0 1 0
0 1 0 0 0 1 1 1 1 0 1
0 0 1 0 0 0 1 1 1 1 0
0 0 0 1 1 1 1 0 1 0 1






.

(118)
3) The associated encoder may be implemented in two

steps, as shown in Fig. 28. In the first step, the matrix
Q acts on the second block of (n−k) = 4 auxiliary (or
parity) qubits controlled by the last k′ = (2k − n) =
7 information qubits, which constitute the information
word. More explicitly, a Controlled NOT (CNOT) gate
acts on the ith qubit of the second block of (n − k)
qubits, which is controlled by the jth information qubit,
if Qij = 1. This may be formulated as follows

|0〉⊗(n−k)|0〉⊗(n−k)|q〉 → |0〉⊗(n−k)|Qq〉|q〉. (119)

The resultant states constitute the set of codewords in C,
which do not differ by any element of C⊥ and therefore
are capable of generating unique cosets of C⊥.
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Fig. 28: Encoder of QBCH[15, 7] [155].

TABLE XI: Stabilizers of the QBCH[15, 7].

Stabilizer

g1 ZIIIZZZZIZIZZII

g2 IZIIIZZZZIZIZZI

g3 IIZIIIZZZZIZIZZ

g4 IIIZZZZIZIZZIIZ

g5 XIIIXXXXIXIXXII

g6 IXIIIXXXXIXIXXI

g7 IIXIIIXXXXIXIXX

g8 IIIXXXXIXIXXIIX

4) The second stage adds the codewords of C⊥ to the
codewords of C generated in the previous step. More
specifically, the second stage on its own generates the
code space of C⊥ according to the PCM H̃. For a
classical code C⊥, the first (n−k) bits are the systematic
information bits, which can have either the value of
0 or 1. Consequently, the first (n − k) = 4 auxiliary
qubits undergo a Hadamard transformation for the sake
of generating the complete code space of the classical
code C⊥. Finally, the matrix P acts on the last k qubits
controlled by the first (n− k) qubits, hence generating
the code space of C⊥. More explicitly, a CNOT gate
acts on the jth qubit, which is controlled by the ith
qubit, if Pij = 1.

The stabilizers of the QBCH[15, 7] code are constructed
using the PCM of Eq. (117) by replacing the 1’s with Z (or
X), while the 0’s are replaced with I. The resultant stabilizer
generators are listed in Table XI. Furthermore, due to the cyclic

nature of BCH codes, both the encoder of Fig. 28 as well
as the stabilizer generators of Table XI can be implemented
using quantum shift registers20, which in turn makes the
QBCH codes suitable for systems having cyclic symmetries,
for example circular ion traps [156]. The binary syndrome
values obtained by applying the stabilizers of Table XI are then
fed to a classical Berlekamp-Massey decoder, which estimates
the most likely error.

B. Convolutional Codes

1) Classical Convolutional Codes: Recall that an (n, k)
block code encodes each block of k information bits indepen-
dently into n coded bits. By contrast, an (n, k,m) convolu-
tional code exemplified in Fig. 29 encodes the entire informa-
tion sequence into a single coded sequence. More specifically,
each k-bit input is encoded into n bits, so that the encoded
output at each time instant also depends on the k information
bits received in the m previous time instances. The resultant
convolutional code has a memory of m, or equivalently a
constraint length of (m + 1), which is implemented using
linear shift registers. Furthermore, the code is specified by n
generator polynomials, which define the topology of modulo-2
gates for generating the required coded sequence. Explicitly,
generator polynomials define the connectivity between the
current and m previous input sequences, which in turn ensures
that the encoded sequence is a legitimate coded sequence.

Let us consider the systematic (2, 1, 2) convolutional code
of Fig. 29, which is specified by the following generator
polynomials:

g0(x) = 1

g1(x) = 1 + x+ x2. (120)

The generator polynomials may also be expressed as a binary
vector, where each bit signifies the presence or absence of
a link. Consequently, the generator polynomials of Eq. (120)
may also be expressed as:

g0 = (100)

g1 = (111), (121)

which are seen in Fig. 29. We may observe in Eq. (121) that g0
has a single non-zero entry. This is because of the systematic
nature of the code. By contrast, a non-systematic convolutional
code would have more than one non-zero term. Consequently,
the polynomial g0 of a non-systematic code would impose
more constraints on the encoded sequence, hence resulting in
a more powerful code.

Let us consider a 10-bit input sequence d = 0011011000,
which may also be represented as d(x) = x2 + x3 + x5 + x6.
This input sequence is encoded into a 20-bit coded sequence
using the encoder of Fig. 29. The associated encoding process
is illustrated in Table XII. More explicitly, the shift register
is initialized to the all-zero state. With each clock cycle, the
state of register r0 is updated with the incoming information

20Please note that implementation of quantum circuits is beyond the scope
of this paper.



32

r0 r1

d(x) c0(x)

c1(x)
Fig. 29: Schematic of the systematic (2, 1, 2) convolutional
encoder.

Index Input State (r0r1) Output

Bit Binary Decimal Bits

0 - 00 0 -

1 0 00 0 00
2 0 00 0 00
3 0 00 0 00
4 1 10 0 11
5 1 11 2 10
6 0 01 3 00
7 1 10 1 10
8 1 11 2 10
9 0 01 3 00
10 0 00 1 01

TABLE XII: Systematic (2, 1, 2) convolutional code encoding
process for d = 0011011000 (d(x) = x2+x3+x5+x6), which
yields the codeword c = 01001010001011000000 (c(x) = x+
x4 + x6 + x10 + x12 + x13).

bit, while its previous value is shifted to the next register r1.
Furthermore, the incoming information bit di constitutes the
systematic part of the coded bit c, while the output of the
modulo-2 adder of Fig. 29 constitutes the parity part.

Analogous to BCH codes, the encoding operation of a
convolution code may also be characterized using a state
transition diagram, as demonstrated in Fig. 30 for the (2, 1, 2)
convolutional code of Fig. 29. Consequently, convolutional
codes invoke trellis decoding techniques, for example the
Viterbi [59] or MAP [61] algorithm, whose decoding com-
plexity is proportional to the number of trellis states 2m.

2) Quantum Convolutional Codes: Quantum Convolutional
Codes (QCCs) may be designed from the classical convolu-
tional codes by exploiting their semi-infinite block nature. Ex-
plicitly, convolutional codes may be represented as linear block
codes having a semi-infinite length [157]. This equivalence in
turn helps in constructing the stabilizer based counterparts of
the known classical codes.

Let us first elaborate on the semi-infinite block structure of
convolutional codes using a (2, 1,m) classical convolutional

Next StatePrevious State

Input Bit
0
1

00

01

10

11

00

01

10

11

(r0r1)(r0r1)

01

11

00

10

01
11

00
11

Fig. 30: State transition diagram for systematic (2, 1, 2) con-
volutional code. Broken lines indicate legitimate transitions
due to a 0-valued input, while continuous lines represent a
1-valued input. Furthermore, transitions are labeled with the
coded bits (c0c1).

code having the generators:

g0 = (g
(0)
0 g

(1)
0 . . . g

(m)
0 )

g1 = (g
(0)
1 g

(1)
1 . . . g

(m)
1 ). (122)

In essence, the generator polynomials g0 and g1 describe the
encoder’s impulse response functions, which are convolved
with the input sequence [d = (d0d1d2 . . . )] to yield the

encoded bit sequences [c0 = (c
(0)
0 c

(1)
0 c

(2)
0 . . . )] and [c1 =

(c
(0)
1 c

(1)
1 c

(2)
1 . . . )], respectively. This encoding process can be

mathematically encapsulated as:

c0 = d⊛ g0
c1 = d⊛ g1, (123)

where ⊛ represents discrete convolution (modulo 2). The
convolution process of Eq. (123) may also be expressed as:

c
(l)
j =

m
∑

i=0

dl−ig
(i)
j = dlg

(0)
j + dl−1g

(1)
j + · · ·+ dl−mg

(m)
j ,

(124)
where j = 0, 1, l ≥ 0 and ul−i , 0 for all l < i. Finally, the
pair of encoded sequences c0 and c1 are multiplexed, yielding
a single encoded sequence c as follows:

c = (c
(0)
0 c

(0)
1 c

(1)
0 c

(1)
1 c

(2)
0 c

(2)
1 . . . ). (125)

The encoding process of Eq. (124) can also be represented in
matrix notation as follows:

c = dG, (126)
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where the generator matrix G is constructed as follows21:

G =













g
(0)
01 g

(1)
01 . . . g

(m)
01

g
(0)
01 g

(1)
01 . . . g

(m)
01

g
(0)
01 g

(1)
01 . . . g

(m)
01

. . . . . .
. . .













, (127)

and g
(i)
01 ,

(

g
(i)
0 g

(i)
1

)

. The resultant matrix G of Eq. (127) has

a semi-infinite length, since the input sequence d may have an
arbitrary length. Furthermore, we may observe that the ith row
of G is obtained by shifting the (i− 1)th row to the right by
(n = 2) places. When d is truncated to have a finite length of
N , then the matrix G of Eq. (127) is of size (N×2(m+N)).
For a more general convolutional code, having the parameters
(n, k,m), the generator matrix G can be expressed as:

G =











G(0) G(1) . . . G(m)

G(0) G(1) . . . G(m)

G(0) G(1) . . . G(m)

. . . . . .
. . .











,

(128)
where G(l) is defined as:

G(l) =













g
(l)
1,1 g

(l)
1,2 . . . g

(l)
1,n−1

g
(l)
2,1 g

(l)
2,2 . . . g

(l)
2,n−1

...
...

...

g
(l)
k,1 g

(l)
k,2 . . . g

(l)
k,n−1













. (129)

The PCM H of a convolutional code can also be expressed
as a semi-infinite matrix similar to the generator matrix G of
Eq. (128), as shown below:

H =

























H(0)

H(1) H(0)

H(2) H(1) H(0)

...
...

...

H(m) H(m−1) H(m−2) . . . H(0)

H(m) H(m−1) H(m−2) . . . H(0)

...
...

...

























,

(130)
where H(l) is a submatrix of size an ((n − k) × n). The
PCM H of Eq. (130) exhibits a block-band structure, which
is also illustrated in Fig. 31. More specifically, if each row
of submatrices (H(m)H(m−1)H(m−2) . . .H(0)) is viewed as
a single block, then H has a block-band structure, so that
each block is a time-shifted version of the previous block and
the successive blocks have m overlapping submatrices. This
block-band structure, which appears after the first m blocks,
may be expressed as:

hj,i = [0j×n, h0,i], 1 ≤ i ≤ (n− k), 0 ≤ j, (131)

where i denotes the row index within a block, while j is for
the block index. Furthermore, 0j×n is an all-zero row-vector

21Zeros indicate blank spaces in the matrix.

H(0)

H(0)

. . .

. . .

H(m−2)H(m)

H(m−2)

(m× n+ n)

n
−
k

m× n

H(m−1)

H(m−1)H(m)

Fig. 31: Semi-infinite classical PCM H having a block-band
structure.

of size (j×n). In duality to Eq. (131), the stabilizer group H
of an [n, k,m] QCC may be formulated as [149]:

H = sp{gj,i = I⊗jn ⊗ g0,i}, 1 ≤ i ≤ (n− k), 0 ≤ j, (132)

where sp denotes a symplectic group.

Let us now design a CSS-type rate-1/3 QCC [150], [151]
from a classical self-dual rate-2/3 binary convolution code
having the PCM:

H =

(

1 1 1 1 0 0 1 1 0 0 0 0 . . .
0 0 0 1 1 1 1 0 0 1 1 0 . . .

. . .

)

,

(133)
and a minimum distance of 3. The corresponding X and Z
stabilizers of a CSS-type QCC may be obtained by replacing
the 1’s of Eq. (133) with Pauli X and Z operators, respectively.
Hence, the stabilizers of the resultant [3, 1] QCC are:

g0,1 = [XXX,XII,XXI], (134)

g0,2 = [ZZZ,ZII,ZZI], (135)

which can correct a single error. The associated stabilizer
group H may be constructed using Eq. (132).

Next, we design a non-CSS, or more precisely CRSS, QCC
given by Forney in [150], [151]. It is constructed from the
classical rate-2/3 quaternary convolutional code having the
PCM:

H =

(

1 1 1 1 w w̄ 0 0 0 . . .
0 0 0 1 1 1 1 w w̄ . . .

. . .

)

, (136)

which is self-orthogonal. The stabilizers of the corresponding
[3, 1] QCC may be constructed using Eq. (99). Explicitly, the
stabilizers g0,i, for 1 ≤ i ≤ 2, are obtained by multiplying the
H of Eq. (136) with the GF(4) elements w and w̄, and mapping
the resultant GF(4) elements onto the Pauli operators. Hence,
the resultant stabilizers are:

g0,1 = (XXX,XZY) , (137)

g0,2 = (ZZZ,ZYX) . (138)
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Analogous to other stabilizer codes, the binary syndrome
values obtained using the stabilizers of a QCC are fed to a
classical syndrome decoder. However, classical convolutional
codes generally employ either the Viterbi [59] or the MAP [61]
decoding algorithm operating over a code trellis for the sake of
estimating the most likely codeword. By contrast, QCCs invoke
the syndrome-based error trellis [158]–[162] for estimating the
most likely error pattern rather than the most likely codeword.
Explicitly, unlike the classic trellis of a convolutional code seen
in Fig. 30, which is constructed using the encoding circuit,
syndrome-based trellis is constructed using the PCM H of
Eq. (130). Furthermore, the conventional trellis, for example
the one obtained using the state transition diagram of Fig. 30,
is known as a code trellis, because each path of it is a valid
codeword. By contrast, each path of the error trellis is a legiti-
mate error sequence for a given observed syndrome. Therefore,
a code trellis is used for codeword decoding, while an error
trellis is used for syndrome decoding. However, both trellis
representations are equivalent, since every path in the error
trellis corresponds to a path in the code trellis. Furthermore, a
degenerate Viterbi decoding algorithm was also conceived for
QCCs in [126], which takes into account degenerate quantum
errors, hence improving the decoding process.

IX. CONCLUSIONS & DESIGN GUIDELINES

QECCs are essential for rectifying the undesirable pertur-
bations resulting from quantum decoherence. Unfortunately,
the well-developed classical coding theory, which has evolved
over seven decades, cannot be directly applied to the quantum
regime. Explicitly, unlike a classical bit, a qubit cannot be
copied and it collapses to a classical bit upon measurement.
Furthermore, while bit flips are the only type of errors experi-
enced during transmission over a classical channel, a quantum
channel may inflict both bit-flips as well as phase-flips. There-
fore, it is not feasible to directly map classical codes onto
their quantum counterparts. Nevertheless, quantum codes may
be designed from the existing classical codes by exploiting
the subtle similarities between these two coding regimes. In
particular, as detailed in Section II, quantum decoherence may
be modeled using the quantum depolarizing channel, which is
deemed equivalent to a pair of binary symmetric channels, or
more specifically to a classical 4-ary channel. This similarity
has helped researchers to develop the quantum versions of
the known classical codes, as evident from our survey of
Section III. For the sake of providing deeper insights into the
transition from classical to quantum coding theory, we started
our discussions in Section IV with a simple repetition code,
which brought forth three fundamental design principles:

• The copying operation of classical codes is equivalent
to quantum entanglement;

• Measurement of a qubit may be circumvented by invok-
ing the classical syndrome decoding techniques;

• Phase-flips may be corrected by using the Hadamard
basis.

Based on these design principles, we detailed the stabilizer
formalism in Section V, which is in essence the quantum-

domain counterpart of classical linear block codes. Since
most of the classical codes rely on the basic construction
of linear block codes, the stabilizer formalism has helped
researchers to build on most of the known families of classical
codes. In Section VI, we detailed the equivalence between
the quantum and classical parity check matrices, focusing
specifically on the Pauli-to-binary isomorphism as well as
on the Pauli-to-quaternary isomorphism. The Pauli-to-binary
isomorphism helps in designing quantum codes from arbitrary
classical binary codes, if they meet the symplectic product
criterion, while the Pauli-to-quaternary isomorphism allows
us to harness arbitrary classical quaternary codes, if they
satisfy the Hermitian inner product. Furthermore, based on
this isomorphism, we presented the taxonomy of stabilizer
codes in Section VII, namely the dual-containing and non-
dual-containing Calderbank-Shor-Steane (CSS) codes non-
CSS codes and entanglement-assisted codes, which are sum-
marized in Table XIII. Finally, in Section VIII, we applied our
discussions to a pair of popular code families of the classical
world, namely the BCH codes and the convolutional codes, for
designing their quantum counterparts.

REFERENCES

[1] P. A. Dirac, The Principles of Quantum Mechanics. Oxford University
Press, 1982.

[2] M. Born, The Born-Einstein letters. Walker, 1971.

[3] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information. Cambridge University Press, 2000.

[4] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” in Proceedings of the 35th Annual Symposium

on Foundations of Computer Science. Washington, DC, USA:
IEEE Computer Society, 1994, pp. 124–134. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1398518.1399018

[5] L. K. Grover, “A fast quantum mechanical algorithm for
database search,” in Proceedings of the Twenty-eighth Annual

ACM Symposium on Theory of Computing, ser. STOC ’96. New
York, NY, USA: ACM, 1996, pp. 212–219. [Online]. Available:
http://doi.acm.org/10.1145/237814.237866

[6] P. Botsinis, D. Alanis, Z. Babar, S. X. Ng, and L. Hanzo, “Noncoherent
quantum multiple symbol differential detection for wireless systems,”
IEEE Access, vol. 3, pp. 569–598, 2015.

[7] P. Botsinis, D. Alanis, Z. Babar, H. V. Nguyen, D. Chandra, S. X.
Ng, and L. Hanzo, “Quantum-aided multi-user transmission in non-
orthogonal multiple access systems,” IEEE Access, vol. 4, pp. 7402–
7424, 2016.

[8] D. Alanis, P. Botsinis, Z. Babar, S. X. Ng, and L. Hanzo, “Non-
dominated quantum iterative routing optimization for wireless mul-
tihop networks,” IEEE Access, vol. 3, pp. 1704–1728, 2015.

[9] D. Alanis, J. Hu, P. Botsinis, Z. Babar, S. X. Ng, and L. Hanzo,
“Quantum-assisted joint multi-objective routing and load balancing for
socially-aware networks,” IEEE Access, vol. 4, pp. 9993–10 028, 2016.

[10] T. J. Hastie, R. J. Tibshirani, and J. H. Friedman,
”The Elements of Statistical Learning : Data Mining,

Inference, and Prediction”. Springer, 2009. [Online]. Available:
http://opac.inria.fr/record=b1127878

[11] J. Lu, G. Wang, and P. Moulin, “Human Identity and Gender Recogni-
tion From Gait Sequences With Arbitrary Walking Directions,” IEEE

Transactions on Information Forensics and Security, vol. 9, no. 1, pp.
51–61, Jan 2014.



35

Code Type Parity Check Matrix Design Criteria
Design Examples

Decoder
Classical Quantum

Dual-containing
CSS

(

H′
z 0

0 H′
z

)

H′
zH

′T

z = 0

(7, 4) Hamming code [7, 1] Steane’s code
(Section VIII-B)

Binary
(15, 11) BCH [15, 7] QBCH code

(Section VIII-A)

(3, 1, 2) CC [3, 1, 2] QCC
(Section VIII-B)

Non-dual-
containing
CSS

(

H′
z 0

0 H′
x

)

H′
z 6= H′

x and H′
zH

′T

x = 0 (3, 1) Repetition
code

[9, 1]Shor’s code
(Section VI-A)

Binary

Non-CSS (Hz |Hx) HzH
T
x +HxH

T
z = 0

(5, 3) Non-binary
Hamming code

[5, 1] Hamming code
(Section VII-B)

Non-Binary

(3, 1, 2) Non-binary
CC

[3, 1, 2] QCC
(Section VIII-B)

EA

(

H′
z 0

0 H′
z

)

and

(Hz |Hx)

Minimize the number of
pre-shared qubits

- Random EA-QSC
(Section VII-C)

Binary &
Non-Binary

TABLE XIII: Design guidelines for constructing stabilizer codes.

[12] D. S. Matovski, M. S. Nixon, S. Mahmoodi, and J. N. Carter, “The
Effect of Time on Gait Recognition Performance,” IEEE Transactions

on Information Forensics and Security, vol. 7, no. 2, pp. 543–552,
April 2012.

[13] S. Imre and F. Balazs, Quantum Computing and Communications: An

Engineering Approach. John Wiley & Sons, 2005.

[14] S. Wiesner, “Conjugate coding,” SIGACT News,
vol. 15, pp. 78–88, January 1983. [Online]. Available:
http://doi.acm.org/10.1145/1008908.1008920

[15] C. H. Bennett and G. Brassard, “Quantum cryptography: public key
distribution and coin tossing,” in Proceedings of the IEEE International

Conference on Computers, Systems and Signal Processing. New York:
IEEE Press, 1984, pp. 175–179.

[16] A. Beige, B.-G. Englert, C. Kurtsiefer, and H. Weinfurter, “Secure
communication with single-photon two-qubit states,” Journal of

Physics A: Mathematical and General, vol. 35, no. 28, p.
L407, Jul 2002. [Online]. Available: http://stacks.iop.org/0305-
4470/35/i=28/a=103

[17] K. Boström and T. Felbinger, “Deterministic secure di-
rect communication using entanglement,” Phys. Rev. Lett.,
vol. 89, p. 187902, Oct 2002. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.89.187902

[18] C. Wang, F.-G. Deng, Y.-S. Li, X.-S. Liu, and G. L. Long, “Quantum
secure direct communication with high-dimension quantum superdense
coding,” Phys. Rev. A, vol. 71, p. 044305, Apr 2005. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevA.71.044305

[19] R. A. Malaney, “Location-dependent communications using quantum
entanglement,” Phys. Rev. A, vol. 81, p. 042319, Apr 2010. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevA.81.042319

[20] R. Malaney, “The quantum car,” IEEE Wireless Communications

Letters, vol. PP, no. 99, pp. 1–1, 2016.

[21] ——, “Quantum geo-encryption,” arXiv:1604.05022, Apr. 2016.

[22] H. J. Kimble, “The quantum internet,” Nature, vol. 453,
no. 7198, pp. 1023–1030, June 2008. [Online]. Available:
http://dx.doi.org/10.1038/nature07127

[23] L. Jiang, J. M. Taylor, A. S. Sørensen, and M. D. Lukin,
“Distributed quantum computation based on small quantum registers,”
Phys. Rev. A, vol. 76, p. 062323, Dec 2007. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevA.76.062323

[24] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz,
L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer
architecture with atomic memory and photonic interconnects,”
Phys. Rev. A, vol. 89, p. 022317, Feb 2014. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevA.89.022317

[25] S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin,
and L. Jiang, “Optimal architectures for long distance quantum
communication,” Scientific Reports, vol. 6, pp. 20 463 EP –, Feb
2016, article. [Online]. Available: http://dx.doi.org/10.1038/srep20463

[26] M. Takeoka, S. Guha, and M. M. Wilde, “Fundamental rate-
loss tradeoff for optical quantum key distribution,” Nature

Communications, vol. 5, pp. 5235 EP –, Oct 2014, article.
[Online]. Available: http://dx.doi.org/10.1038/ncomms6235

[27] Z. Babar, S. X. Ng, and L. Hanzo, “Near-capacity code design for
entanglement-assisted classical communication over quantum depo-
larizing channels,” IEEE Transactions on Communications, vol. 61,
no. 12, pp. 4801–4807, December 2013.

[28] ——, “EXIT-chart aided code design for symbol-based entanglement-
assisted classical communication over quantum channels,” in IEEE

Vehicular Technology Conference (VTC Fall), Sept 2014, pp. 1–5.

[29] C. H. Bennett, “Communication via one- and two-particle
operators on Einstein-Podolsky-Rosen states,” Physical Review

Letters, vol. 69, no. 20, p. 2881, 1992. [Online]. Available:
http://dx.doi.org/%7B10.1103/PhysRevLett.69.2881%7D

[30] G. Brassard and L. Salvail, Secret-Key Reconciliation by Public



36

Discussion. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994,
pp. 410–423.

[31] W. T. Buttler, S. K. Lamoreaux, J. R. Torgerson, G. H.
Nickel, C. H. Donahue, and C. G. Peterson, “Fast, efficient
error reconciliation for quantum cryptography,” Phys. Rev.

A, vol. 67, p. 052303, May 2003. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevA.67.052303

[32] D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme,
W. H. Zurek, T. F. Havel, and S. S. Somaroo,
“Experimental quantum error correction,” Phys. Rev. Lett.,
vol. 81, pp. 2152–2155, Sep 1998. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.81.2152

[33] M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio,
S. M. Girvin, and R. J. Schoelkopf, “Realization of three-qubit
quantum error correction with superconducting circuits,” Nature,
vol. 482, no. 7385, pp. 382–385, Feb. 2012. [Online]. Available:
http://dx.doi.org/10.1038/nature10786

[34] G. Arrad, Y. Vinkler, D. Aharonov, and A. Retzker,
“Increasing sensing resolution with error correction,” Phys. Rev.

Lett., vol. 112, p. 150801, Apr 2014. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.112.150801

[35] I. L. Chuang, D. W. Leung, and Y. Yamamoto, “Bosonic
quantum codes for amplitude damping,” Phys. Rev. A,
vol. 56, pp. 1114–1125, Aug 1997. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevA.56.1114

[36] J. Preskill, “Quantum information and computation,” Lecture Notes for

Physics 229, 1998.

[37] J. Ghosh, A. G. Fowler, and M. R. Geller, “Surface code with
decoherence: An analysis of three superconducting architectures,”
Phys. Rev. A, vol. 86, p. 062318, Dec 2012. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevA.86.062318

[38] P. K. Sarvepalli, A. Klappenecker, and M. Rötteler,
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[104] M. Tüchler and J. Hagenauer, “EXIT charts of irregular codes,”
in Proceedings of Conference on Information Science and Systems,
Princeton University, 20-22 March 2002, pp. 748–753.

[105] G. Bowen, “Entanglement required in achieving entanglement-assisted
channel capacities,” Phys. Rev. A, vol. 66, p. 052313, Nov 2002. [On-
line]. Available: http://link.aps.org/doi/10.1103/PhysRevA.66.052313

[106] H. Ollivier and J.-P. Tillich, “Description of a quantum convolutional
code,” Phys. Rev. Lett., vol. 91, p. 177902, Oct 2003. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevLett.91.177902

[107] J. Kliewer, S. X. Ng, and L. Hanzo, “Efficient computation of EXIT
functions for non-binary iterative decoding,” IEEE Transactions on

Communications, vol. 54, no. 12, pp. 2133–2136, December 2006.

[108] T. A. Brun, I. Devetak, and M.-H. Hsieh, “Correcting quantum errors
with entanglement,” Science, vol. 314, no. 5798, oct. 2006.

[109] ——, “General entanglement-assisted quantum error-correcting
codes,” in IEEE International Symposium on Information Theory, june
2007, pp. 2101 –2105.

[110] M.-H. Hsieh, I. Devetak, and T. Brun, “General entanglement-
assisted quantum error-correcting codes,” Phys. Rev. A,
vol. 76, p. 062313, Dec 2007. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevA.76.062313

[111] S. X. Ng, O. Alamri, Y. Li, J. Kliewer, and L. Hanzo, “Near-capacity
turbo trellis coded modulation design based on EXIT charts and union
bounds,” IEEE Transactions on Communications, vol. 56, no. 12, pp.
2030 –2039, December 2008.

[112] D. Poulin, J.-P. Tillich, and H. Ollivier, “Quantum serial turbo-codes,”
in IEEE International Symposium on Information Theory, July 2008,
pp. 310–314.

[113] D. Poulin, J. Tillich, and H. Ollivier, “Quantum serial turbo codes,”
IEEE Transactions on Information Theory, vol. 55, no. 6, pp. 2776–
2798, June 2009.



38

[114] D. Poulin and Y. Chung, “On the iterative decoding of
sparse quantum codes,” Quantum Info. Comput., vol. 8,
no. 10, pp. 987–1000, Nov. 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2016985.2016993

[115] Y.-J. Wang, B. Sanders, B.-M. Bai, and X.-M. Wang, “Enhanced feed-
back iterative decoding of sparse quantum codes,” IEEE Transactions

on Information Theory, vol. 58, no. 2, pp. 1231 –1241, feb. 2012.

[116] Z. Babar, P. Botsinis, D. Alanis, S. X. Ng, and L. Hanzo, “Fifteen
years of quantum LDPC coding and improved decoding strategies,”
IEEE Access, vol. 3, pp. 2492–2519, 2015.

[117] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,”
IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051–
3073, July 2009.

[118] R. Tee, R. Maunder, and L. Hanzo, “EXIT-chart aided near-capacity
irregular bit-interleaved coded modulation design,” IEEE Transactions

on Wireless Communications, vol. 8, no. 1, pp. 32–37, 2009.

[119] M.-H. Hsieh, T. A. Brun, and I. Devetak, “Entanglement-
assisted quantum quasicyclic low-density parity-check codes,” Phys.

Rev. A, vol. 79, p. 032340, Mar 2009. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevA.79.032340

[120] M. M. Wilde and T. A. Brun, “Entanglement-assisted quantum convo-
lutional coding,” Phys. Rev. A, vol. 81, p. 042333, Apr 2010. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevA.81.042333

[121] M. M. Wilde and M.-H. Hsieh, “Entanglement boosts quantum turbo
codes,” in IEEE International Symposium on Information Theory, Aug.
2011, pp. 445 – 449.

[122] M. Wilde, M.-H. Hsieh, and Z. Babar, “Entanglement-assisted quan-
tum turbo codes,” IEEE Transactions on Information Theory, vol. 60,
no. 2, pp. 1203–1222, Feb 2014.

[123] M. Wilde and S. Guha, “Polar codes for classical-quantum channels,”
IEEE Transactions on Information Theory, vol. 59, no. 2, pp. 1175
–1187, feb. 2013.

[124] ——, “Polar codes for degradable quantum channels,” IEEE Trans-

actions on Information Theory, vol. 59, no. 7, pp. 4718–4729, July
2013.

[125] J. M. Renes, F. Dupuis, and R. Renner, “Efficient
polar coding of quantum information,” Phys. Rev. Lett.,
vol. 109, p. 050504, Aug 2012. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.109.050504

[126] E. Pelchat and D. Poulin, “Degenerate Viterbi decoding,” IEEE

Transactions on Information Theory, vol. 59, no. 6, pp. 3915–3921,
2013.

[127] Z. Babar, S. X. Ng, and L. Hanzo, “EXIT-chart aided near-capacity
quantum turbo code design,” IEEE Transactions on Vehicular Tech-

nology, vol. PP, no. 99, pp. 1–1, 2014.

[128] R. Maunder, “A fully-parallel turbo decoding algorithm,” IEEE Trans-

actions on Communications, vol. 63, no. 8, pp. 2762–2775, Aug 2015.

[129] Z. Babar, P. Botsinis, D. Alanis, S. X. Ng, and L. Hanzo, “The road
from classical to quantum codes: A hashing bound approaching design
procedure,” IEEE Access, vol. 3, pp. 146–176, 2015.

[130] J. M. Renes, D. Sutter, F. Dupuis, and R. Renner, “Efficient quantum
polar codes requiring no preshared entanglement,” IEEE Transactions

on Information Theory, vol. 61, no. 11, pp. 6395–6414, 2015.

[131] Z. Babar, H. V. Nguyen, P. Botsinis, D. Alanis, D. Chandra, S. X.
Ng, and L. Hanzo, “Serially concatenated unity-rate codes improve
quantum codes without coding-rate reduction,” IEEE Communications

Letters, vol. 20, no. 10, pp. 1916–1919, 2016.

[132] Z. Babar, H. V. Nguyen, P. Botsinis, D. Alanis, D. Chandra, S. X. Ng,
R. G. Maunder, and L. Hanzo, “Fully-parallel quantum turbo decoder,”
IEEE Access, vol. 4, pp. 6073–6085, 2016.

[133] L. Hanzo, Near-capacity variable-length coding: regular and EXIT-

chart-aided irregular designs. John Wiley & Sons, 2010, vol. 20.

[134] L. Hanzo, T. H. Liew, B. L. Yeap, R. Y. S. Tee and S. X. Ng, Turbo

Coding, Turbo Equalisation and Space-Time Coding: EXIT-Chart-

Aided Near-Capacity Designs for Wireless Channels, 2nd Edition.
New York, USA: John Wiley IEEE Press, March 2011.

[135] R. C. Bose and D. K. Ray-Chaudhuri, “Further results on error
correcting binary group codes,” Information and Control, vol. 3, no. 3,
pp. 279–290, 1960.

[136] Blue Book: Recommendations for Space Data System Standards:

Telemetry Channel Coding. Consultative Committee for Space Data
Systems, May 1984.

[137] M. El-Hajjar and L. Hanzo, “EXIT charts for system design and
analysis,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1,
pp. 127–153, First 2014.

[138] Universal Mobile Telecommunications System (UMTS); Multiplexing

and Channel Coding (FDD), V9.3.0. ETSI TS 125 222, 2012.

[139] LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Multi-

plexing and Channel Coding, V13.1.0. ETSI TS 136 212, 2016.

[140] K. Niu, K. Chen, J. Lin, and Q. T. Zhang, “Polar codes: Primary
concepts and practical decoding algorithms,” IEEE Communications

Magazine, vol. 52, no. 7, pp. 192–203, July 2014.

[141] P. W. Shor, “The quantum channel capacity and coherent information,”
Lecture Notes, MSRI Workshop on Quantum Computation, 2002.

[142] I. Devetak, “The private classical capacity and quantum capacity of a
quantum channel,” IEEE Transactions on Information Theory, vol. 51,
no. 1, pp. 44–55, Jan 2005.

[143] D. P. DiVincenzo, P. W. Shor, and J. A. Smolin,
“Quantum-channel capacity of very noisy channels,” Phys.

Rev. A, vol. 57, pp. 830–839, Feb 1998. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevA.57.830

[144] G. Smith and J. A. Smolin, “Degenerate quantum codes for Pauli
channels,” Phys. Rev. Lett., vol. 98, p. 030501, Jan 2007. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevLett.98.030501

[145] C.-Y. Lai, T. Brun, and M. Wilde, “Dualities and identities
for entanglement-assisted quantum codes,” Quantum Information

Processing, vol. 13, no. 4, pp. 957–990, 2014. [Online]. Available:
http://dx.doi.org/10.1007/s11128-013-0704-8

[146] D. MacKay, G. Mitchison, and P. McFadden, “Sparse-graph codes for
quantum error correction,” IEEE Transactions on Information Theory,
vol. 50, no. 10, pp. 2315–2330, Oct 2004.

[147] T. Camara, H. Ollivier, and J.-P. Tillich, “Constructions and
performance of classes of quantum LDPC codes,” arXiv:quant-

ph/0502086v2, 2005.

[148] ——, “A class of quantum LDPC codes: construction and perfor-
mances under iterative decoding,” in IEEE International Symposium

on Information Theory, June 2007, pp. 811–815.

[149] H. Ollivier and J. P. Tillich, “Quantum convolutional codes: funda-
mentals,” quant-ph/0401134, 2004.

[150] G. D. Forney and S. Guha, “Simple rate-1/3 convolutional and tail-
biting quantum error-correcting codes,” in IEEE International Sympo-

sium on Information Theory, Sept. 2005, pp. 1028 –1032.

[151] G. D. Forney, M. Grassl, and S. Guha, “Convolutional and tail-biting
quantum error-correcting codes,” IEEE Transactions on Information

Theory, vol. 53, no. 3, pp. 865–880, March 2007.

[152] M. Houshmand and M. Wilde, “Recursive quantum convolutional
encoders are catastrophic: A simple proof,” IEEE Transactions on

Information Theory, vol. 59, no. 10, pp. 6724–6731, 2013.

[153] W. K. Wootters and W. H. Zurek, “A single quantum cannot be
cloned,” Nature, vol. 299, no. 5886, pp. 802–803, Oct. 1982. [Online].
Available: http://dx.doi.org/10.1038/299802a0

[154] L. Hanzo, T. H. Liew, and B. L. Yeap, Turbo coding, turbo equalisation

and space-time coding. John Wiley & Sons, 2002.

[155] P. Botsinis, Z. Babar, D. Alanis, D. Chandra, H. Nguyen, S. X. Ng,
and L. Hanzo, “Quantum error correction protects quantum search
algorithms against decoherence,” Scientific Reports, vol. 6, 2016.

[156] M. Grassl and T. Beth, “Cyclic quantum error–correcting codes and
quantum shift registers,” in Proceedings of the Royal Society of London



39

A: Mathematical, Physical and Engineering Sciences, vol. 456, no.
2003. The Royal Society, 2000, pp. 2689–2706.

[157] S. Lin and D. J. Costello, Error Control Coding. New Jersey, USA:
Pearson-Prentice Hall, 2004.

[158] J. Schalkwijk and A. Vinck, “Syndrome decoding of convolutional
codes,” IEEE Transactions on Communications, vol. 23, no. 7, pp.
789 – 792, jul 1975.

[159] ——, “Syndrome decoding of binary rate-1/2 convolutional codes,”
IEEE Transactions on Communications, vol. 24, no. 9, pp. 977 – 985,
sep 1976.

[160] J. Schalkwijk, A. Vinck, and K. Post, “Syndrome decoding of binary-
rate k/n convolutional codes,” IEEE Transactions on Information

Theory, vol. 24, no. 5, pp. 553 – 562, sep 1978.

[161] M. Ariel and J. Snyders, “Soft syndrome decoding of binary convo-
lutional codes,” IEEE Transactions on Communications, vol. 43, no.
234, pp. 288 – 297, Feb./Mar./Apr. 1995.

[162] V. Sidorenko and V. Zyablov, “Decoding of convolutional codes
using a syndrome trellis,” Information Theory, IEEE Transactions on,
vol. 40, no. 5, pp. 1663 –1666, sep 1994.



Received May 7, 2017, accepted June 8, 2017, date of publication June 16, 2017, date of current version July 17, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2716367

Quantum Coding Bounds and a Closed-Form
Approximation of the Minimum Distance
Versus Quantum Coding Rate

DARYUS CHANDRA, (Student Member, IEEE), ZUNAIRA BABAR,
HUNG VIET NGUYEN, (Member, IEEE), DIMITRIOS ALANIS, (Student Member, IEEE),
PANAGIOTIS BOTSINIS, (Member, IEEE), SOON XIN NG, (Senior Member, IEEE),
AND LAJOS HANZO, (Fellow, IEEE)
School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, U.K.

Corresponding author: Lajos Hanzo (lh@ecs.soton.ac.uk)

This work was supported in part by EPSRC under Grant EP/L018659/1, in part by the European Research Council, Advanced Fellow

Grant, and in part by the Royal Society’s Wolfson Research Merit Award. The research data of this paper can be found at

http://doi.org/10.5258/SOTON/D0131.

ABSTRACT The tradeoff between the quantum coding rate and the associated error correction capability

is characterized by the quantum coding bounds. The unique solution for this tradeoff does not exist, but

the corresponding lower and the upper bounds can be found in the literature. In this treatise, we survey

the existing quantum coding bounds and provide new insights into the classical to quantum duality for the

sake of deriving new quantum coding bounds. Moreover, we propose an appealingly simple and invertible

analytical approximation, which describes the tradeoff between the quantum coding rate and the minimum

distance of quantum stabilizer codes. For example, for a half-rate quantum stabilizer code having a code

word length of n = 128, the minimum distance is bounded by 11 < d < 22, while our formulation yields a

minimum distance of d = 16 for the above-mentioned code. Ultimately, our contributions can be used for

the characterization of quantum stabilizer codes.

INDEX TERMS Quantum error correction codes, quantum stabilizer codes, quantum coding bound.
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I. INTRODUCTION

Moore’s Law has remained valid for five decades, but based

on its prediction at the time of writing the classical integrated

circuits are expected to enter the nano-scale domain, where

the laws of quantum mechanics prevail [1], [2]. Quantum

computers potentially offer substantial benefits over clas-

sical computers owing to their inherent parallel processing

capability [3]–[14]. However, quantum computers are sus-

ceptible to the deleterious effect of quantum decoherence.

Hence, quantum error correction codes (QECCs) have been

proposed for correcting the bit-flips and phase-flips imposed

by the decoherence effects. Furthermore, the employment of

QECC in quantum computers is also capable of extending

the coherence time of qubits [15]. The concept of protecting

quantum information is similar to that of its classical coun-

terpart by attaching redundancy to the information, which is

then invoked later for error correction. The quest for finding

the ‘‘good’’ QECCs was inspired by Shor, who introduced

the 9-qubit code, which is often referred to as the Shor’s

code [16]. Shor’s code encodes a single information qubit,

which is also referred to as ’’logical qubit’’, into nine encoded

qubits or ‘‘physical qubits’’. The Shor’s code construction

is capable of protecting the nine physical qubits from any

type of single qubit error. Following the discovery of Shor’s

code, another QECC scheme, namely the Steane’s code, was

proposed [17]. The latter is capable of protecting any single

qubit error by encoding a single logical qubit into seven

physical qubits, instead of nine qubits. The question about

what the minimum number of physical qubits is required

in order to protect the physical qubits from any type of

single qubit error was answered when Laflamme et al. pro-

posed the 5-qubit quantum code [18]. This 5-qubit code may

be referred to as Laflamme’s code or also shown as the

‘‘perfect code’’, since the code construction achieves the

quantumHamming bound, which is the upper bound of quan-

tum coding rate given the minimum diatance of any QECC

construction [19], [20].

The field of QECCs entered its golden age following the

invention of quantum stabilizer codes (QSCs) [21], [22].

The QSC paradigm allows us to transform the classical

error correction codes into their quantum counterparts. The

QSCs also circumvent the problem of estimating both the

number and the position of quantum-domain errors imposed

by quantum decoherence without observing the actual quan-

tum states, since observing the quantum states would col-

lapse the qubits into classical bits. This extremely beneficial

error estimation was achieved by introducing the syndrome-

measurement based approach [21], [22]. In classical error

correction codes, the syndrome-measurement based approach

has been widely exploited for invoking the error detection and

correction procedure. Therefore, the formulation of QSCs

expanded the search space of good QECCs to a broader

horizon. This new paradigm of incorporating the classical to

quantum isomorphisms, led to the transformation of classical

codes to their quantum domain duals, such as Quantum

Bose-Chaudhuri-Hocquenghem (QBCH) codes [23], [24],

Quantum Reed-Solomon (QRS) codes [25], Quantum

Reed-Muller (QRM) codes [26], Quantum Convolu-

tional Codes (QCC) [27], [28], Quantum Low-Density

Parity-Check (QLDPC) codes [29], Quantum Turbo

Codes (QTC) [30] and Quantum Polar Codes (QPC) [31].

Apart from exploiting the above isomorphism, there are

also significant contributions on directly developing code

constructions solely based on the pure quantum topol-

ogy and homology, as exemplified by the family of toric

codes [32]–[34], surface codes [35], [36], colour codes [37],

cubic codes [38], hyperbolic surface codes [39], [40], hyper-

bolic color codes [41], hypergraph product codes [42]–[44]

and homological product codes [45]. A timeline that portrays

the milestones of QSCs, at a glance is depicted in Fig. 1.

Although the QSC formulation creates an important class of

QECCs, we note that there are also other classes of QECCs

beside the QSCs, such as the class of decoherence-free

subspace (DFS) codes. DFS codes can be viewed as passive

QECCs, while the QSCs are a specific example of the active

ones. To elaborate a little further, DFS codes constitute a

highly degenerate class of QECCs, which rely on the fact that

the error patterns may preserve the state of physical qubits

and therefore they do not neccessarily require a recovery

procedure [46]. Due to their strong reliance on the degeneracy

property exhibited by QECCs without a classical counterpart,

the class of DFS codes bears no resemblance to any classical

error correction codes. Therefore, in this treatise we focus our

discussions purely on QSCs, which exhibit strong analogies

with classical error correction codes.

Even though intensive research efforts have been invested

in exploring the QSCs field, one of the mysteries still remains

unresolved. Since the development of the first QSC, one of

the open problems has been how to determine the realistically

achievable size of the codebook |C| = 2k , given the number

of physical qubits n, the minimum distance of d , and the

quantum coding rate of rQ = k/n, where k denotes

the number of logical qubits. The minimum distance d is the

parameter that defines the error correction capability of the

corresponding code. The complete formulation of the realis-

tically achievable minimum distance d , given the number of

physical qubits n and the quantum coding rate rQ is unknown

at the time of writing, but several theoretical lower and upper

bounds can be found in the literature. Naturally, finding code

constructions associated with growing minimum distances

upon reducing the coding rate is desirable, since an increased

minimum distance improves the reliability of quantum

computation [60]–[64]. From the implementational perspec-

tive, the so-called quantum topological codes are popular in

the field of fault-tolerant quantum computing. Nonetheless,

one of the substantial drawbacks of quantum topological

codes is their potentially very low quantum coding rate, tends

towards zero for long codewords. Another class suitable for

fault-tolerant QSCs is constituted by the family of QLDPC

codes, which is a benefit of their sparse parity check matri-

ces (PCMs), since the sparseness of the PCM guarantees

having a limited error propagation of the qubits within a
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FIGURE 1. Timeline of important milestones in QECC field, specifically in the development of QSCs. The code construction is highlighted with bold fonts,
while the associated code type is printed in italics.

codeword. Although the QLDPC codes are capable of achiev-

ing a good performance at an adequate coding rate, they

actually have a modest minimum distance [29]. The trade-off

between the quantum coding rate and the minimum distance

as well as the codeword length is widely recognized, but the

achievable minimum distance d of a quantum code given the
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quantum coding rate rQ and codeword length n still remained

unresolved. For example, for a given codeword length of

n = 128 and quantum coding rate of rQ = 1/2, the achievable

minimum distance is losely bounded by 11 < d < 22,

while for n = 1024 and rQ = 1/2, the achievable minimum

distance is bounded by 78 < d < 157. Naturally, having such

a wide range of minimum distance is undesirable. For binary

classical codes, this problem has been circumvented by the

closed-form approximation proposed by Akhtman et al. [65].

The challenge of creating the quantum counterpart of

error correction codes lies in the fact that QSC constructions

have to mitigate not only bit-flip errors, but also phase-

flip errors or in fact both bit-flip and phase-flip errors.

Based on how we mitigate those different types of errors,

we can simply categorize QSCs as being in the class of

Calderbank-Shor-Steane (CSS) codes [17], [66], [67] or as

being non-CSS codes [22]. The CSS codes handle the qubit

errors by treating the bit-flip errors and phase-flip errors as

separate entities. By contrast, the class of non-CSS codes

treat both bit-flip errors and phase-flip errors simultaneously.

Since the CSS codes treat the bit-flip and phase-flip error

correction procedures separately, in general, they exhibit a

lower coding rate than their non-CSS counterparts having

the same error correction capability. Furthermore, if we also

consider the presence of quantum entanglement, wemay con-

ceive more powerful quantum code constructions. To elabo-

rate, the family of entanglement-assisted quantum stabilizer

codes (EA-QSCs) is capable of operating at a higher quan-

tum coding rate than the unassisted QSC constructions

at a given error correction capability, provided that error-

free maximally-entangled qubits have already been pre-

shared [48], [49].

Against this background, our contributions are summa-

rized as follows:

• We provide a survey of the existing quantum coding

bounds found in the literature, along with their relation-

ship to the existing quantum stabilizer code construc-

tions. Moreover, to bridge the gap between the classical

and quantum coding bounds, we provide further insights

into the classical to quantum isomorphism in the context

of the associated coding bound formulations.

• We formulate a simple invertible formulation of r(n, δ)

characterizing the relationship between the quantum

coding rate and the associated achievable minimum dis-

tance of quantum stabilizer codes. The resultant closed-

form approximation of quantum coding bound is suit-

able both for idealized infinite and practical finite-

length codewords. More specifically, we show that using

our closed-form approximation, we become able to esti-

mate the realistically achievable minimum distance of

quantum stabilizer codes.

• We then derive the bounds for maximally-entangled

quantum stabilizer codes in conjunction with arbitrary

entanglement ratios and relate them to those of unas-

sisted quantum stabilizer codes. More explicitly, for

the entanglement ratio of θ = 0, we arrive at the

FIGURE 2. The structure of the paper.

bounds of unassisted quantum stabilizer codes while for

θ = 1, we generate the quantum coding bounds for their

maximally-entangled counterparts.

The structure of the paper is described in Fig. 2 and the

rest of this paper is organized as follows. In Section II,

we commence with a brief fundamentals background on

quantum states. A review of QSC constructions is presented

in Section III, followed by Section IV, where we illustrate the

Pauli-to-Binary isomorphism in the context of QSCs that are

capable of correcting single qubit errors. By incorporating the

classical to quantum duality, we show how to derive quantum

coding bounds from their classical counterparts and we also

contrast them in Section V. We then proceed with the study

of quantum coding bounds derived both for asymptotical infi-

nite and practical finite-length codewords in Section VI and

Section VII, respectively. We then provide further insights

into the quantum coding bounds of entanglement-assisted

quantum stabilizer codes in Section VIII. Finally, we con-

clude in Section IX.

II. A BRIEF INTRODUCTION TO QUANTUM

INFORMATION PROCESSING

In classical computation, the information is conveyed by a

binary digit or ‘‘bit’’. Each bit has a value of either logical

‘‘0’’ or ‘‘1’’. Similarly, in a quantum computer, a single ele-

ment of information is represented by a quantum bit (qubit).

Each of the qubits is in a superposition of the ‘‘0’’ and ‘‘1’’.

The state of a single qubit can be represented mathematically

as

|ψ〉 = α0|0〉 + α1|1〉, (1)
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where we have α0, α1 ∈ C and |α0|2+|α1|2 = 1. For a single

qubit in the state of Eq. (1), the probability of obtaining |0〉
upon observation is P0 = |α0|2 and for the state |1〉, it is P1 =
|α1|2. Representing the state of a qubit as shown in Eq. (1) is
also known as the Dirac notation or ‘‘bra-ket’’ notation [68].

Apart from using the Dirac notation, we may represent the

state of a single qubit as a 2-component vector as follows:

|ψ〉 = α0|0〉 + α1|1〉

= α0

(
1

0

)
+ α1

(
0

1

)

=
(
α0
α1

)
. (2)

Basically, a single qubit system may be viewed as a two-

component vector in the two-dimensional Hilbert space

and correspondingly an N -qubit string lies within the

2N -dimensional Hilbert space. More specifically, for exam-

ple, a two-qubit operand is in a superposition of four states

of 00, 01, 10, and 11 simultaneously, which can be written as

|ψ〉 = α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉, (3)

where the constraints of α00, α01, α10, α11 ∈ C and |α00|2 +
|α01|2 +|α10|2 +|α11|2 = 1 still hold. If the binary represen-

tations of 00, 01, 10 and 11 are translated to their decimal

representations of 0, 1, 2 and 3 respectively, the resultant

N -qubit state can be encapsulated as

|ψ〉 =
2N−1∑

i=0

αi|i〉 where αi ∈ C,

2N−1∑

i=0

|αi|2 = 1. (4)

The Pauli group G1 defines the unitary transformation of a

single qubit, which is closed under multiplication. The Pauli

group G1 is defined as

G1 = {eP : P ∈ {I,X,Y,Z}, e ∈ {±1,±i}}, (5)

where I,X,Y and Z are the Pauli matrices, which manipulate

the two-dimensional single qubit state and each of them is

defined as follows:

I =
(
1 0

0 1

)
, X =

(
0 1

1 0

)
,

Y =
(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
. (6)

In the context of quantum information processing, each Pauli

matrix represents the discrete set of errors that may cor-

rupt a single qubit state. Physically, they represent a bit-flip

error (X), a phase-flip error (Z), as well as a joint bit-flip and

phase-flip error (iXZ = Y), while Pauli-I represents the iden-

tity operator corresponding to the absence of errors. However,

it is always important to bear in mind that the nature of

quantum decoherence is continuous and it can be modeled as

a linear combination of X, Z, and Y type errors. Fortunately,

due to the effect of stabilizer measurement, we can model the

continuous nature of quantum decoherence with the aid of the

bit-flip (X), phase-flip (Z), as well as a simultaneous bit-flip

and phase flip (Y) errors.

For an N -qubit operator, the general Pauli group Gn is

represented by an n-fold tensor product of G1, as defined

below:

Gn = {P1 ⊗ P2 · · · ⊗ Pn|Pj ∈ G1}. (7)

The Pauli channel inflicts an error P ∈ Gn on an N -qubit

string, where each qubit may independently experience either

a bit-flip error (X), a phase-flip error (Z), or both bit-flip

and phase-flip error (iXZ = Y). For instance, let us assume

having a single qubit in the state of |ψ〉 = α0|0〉 + α1|1〉.
A Pauli matrix X transforms a single qubit in the state of |ψ〉
into the following state:

|ψ ′〉 = X|ψ〉

=
(
0 1

1 0

)
.

(
α0
α1

)

=
(
α1
α0

)

≡ α1|0〉 + α0|1〉. (8)

The transformation by the Pauli matrix Z of a single qubit

state results in a phase-flip, which is defined by

|ψ ′〉 = Z|ψ〉

=
(
1 0

0 −1

)
.

(
α0
α1

)

=
(
α0

−α1

)

≡ α0|0〉 − α1|1〉. (9)

By following the same method, we can readily determine the

manipulated state of a single qubit by the Pauli matrix Y

resulting both in a simultaneous bit-flip and phase-flip as

follows:

|ψ ′〉 = Y|ψ〉

=
(
0 −i
i 0

)
.

(
α0
α1

)

=
(

iα1
−iα0

)

≡ iα1|0〉 − iα0|1〉, (10)

Let us now proceed by applying the unitary transformation

to a multi-qubit state of Eq. 7. For instance, let us assume

a two-qubit operand in the state of Eq. 3, which can be

represented as a 4-element vector as follows:

|ψ〉 =




α00
α01
α10
α11


 . (11)

For example, the quantum decoherence inflicts the two-qubit

unitary transformation of (X ⊗ I)1 upon a two-qubit state,

1For the sake of simplifying the notation, a set of Pauli matrices for
defining a multi-qubit unitary transformation usually does not include the
‘‘⊗’’ operator. For example, a unitary transformation (X ⊗ Z ⊗ X ⊗ I) act-
ing upon a 4-qubit operand can simply be rewritten as XZXI. In the rest of
the paper, the latter representation is used.
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which can be described as follows:

|ψ ′〉 = (X ⊗ I) |ψ〉

=
((

0 1

1 0

)
⊗

(
1 0

0 1

))
.




α00
α01
α10
α11




=




0

(
1 0

0 1

)

(
1 0

0 1

)
0


 .




α00
α01
α10
α11




=




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


 .




α00
α01
α10
α11




=




α10
α11
α00
α01




≡ α10|00〉 + α11|01〉 + α00|10〉 + α01|11〉. (12)

The final state of Eq. (12) can also be obtained without

expanding the tensor product of the unitary transformation

by flipping the state of the first qubit, since the unitary

transformation of XI means that a bit-flip error occurs on

the first qubit, while the second qubit does not experience

any impairment. More explicitly, due to the unitary transfor-

mation XI, the state of |00〉 is changed to state of |10〉. The
same transformation is also applied to the states of |01〉, |10〉,
and |11〉, where they are transformed to the states of |11〉,
|00〉, |10〉, respectively. Hence, the magnitude associated with

the state of |00〉 is no longer α00 and now it becomes α10.

Therefore, the magnitudes associated with the states of |01〉,
|10〉, and |11〉 are α11, α00, and α01, respectively.

Since we focus our discussions on the family of QSCs,

the quantum coding bounds can be derived from their classi-

cal counterparts. Even thoughmost of the well-known bounds

on quantum codes are derived on the basis of the classical-to-

quantum isomorphism, the pure quantum code constructions

not relying on the classical-to-quantum isomorphism, but

rather based on topological and homological orders still obey

to these quantum coding bounds, provided that they belong

to the family of non-degenerate quantum codes. To elaborate

a little further, degeneracy is one of the distinctive charac-

teristics of quantum codes, which cannot be found in their

classical counterpart. More explicitly, quantum codes inher-

ently exhibit a degeneracy property implying that different

error patterns of P ∈ Gn may yield an identical corrupted

state. For example, let us assume a two-qubit operand in the

following state:

|ψ〉 =
1

√
2
(|00〉 + |11〉) , (13)

and consider two different error patterns, which can be

described as a pair of two-qubit unitary transformations given

by E1 = IZ and E2 = ZI. The resultant state after the

error pattern E1 is imposed to the two-qubit system can be

described as follows:

|ψ ′
1〉 = IZ|ψ〉

=




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


 .




1
√
2
0

0
1

√
2




=




1
√
2
0

0

−
1

√
2




≡
1

√
2
(|00〉 − |11〉) , (14)

while the acts of E2 upon the state of |ψ〉 will result in the

following state:

|ψ ′
2〉 = ZI|ψ〉

=




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 .




1
√
2
0

0
1

√
2




=




1
√
2
0

0

−
1

√
2




≡
1

√
2
(|00〉 − |11〉) . (15)

Since the error patterns E1 = IZ and E2 = ZI yield

an identical corrupted states |ψ ′
1〉 and |ψ ′

2〉, they undoubtly

require an identical recovery procedure. Indeed, exploiting

the degeneracy property may potentially increase the error

correction capability of quantum codes. However, the ques-

tion as to whether there exist degenerate quantum codes

that are capable of operating beyond the quantum Hamming

bound remains unresolved at the time of writing. Therefore,

we limit our discussions in this treatise to the non-degenerate

QSCs, although some research on finding the bounds of

degenerate quantum codes can be found in [19], [69],

and [70].

III. A BRIEF REVIEW OF QUANTUM STABILIZER

CODE CONSTRUCTIONS

Let us recall the fact that qubits collapse to classical bits upon

measurement [71]. This prevents us from directly transplant-

ing the classical error correction procedures to the quantum

domain. Inspired by the PCM-based syndrome decoding phi-

losophy, the notion of QSCswas introduced in [21], where the

terminology of quantum stabilizer codes (QSCs) represents

the quantum domain counterpart of syndrome-based classical

error correction codes. Almost at the same time, an inde-

pendent framework of transforming classical error correction

codes to QECCs was proposed in [47] and later the extended

version was presented in [22]. The aforementioned proposals

are similar in terms of their concept and the terminology

of quantum stabilizer codes (QSCs) is widely recognized,

unifying both framewoks. The QSCs formulation allows us

to transform every PCM-based classical error correction code

into its quantum counterpart. Considering that QSCs have
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to handle several different types of errors, namely bit-flip

errors (X), phase-flip errors (Z), as well as both bit-flip and

phase-flip errors (iXZ = Y), the PCM of C[n, k]2 of QSCs,

in general, can be formulated as

H = (Hz|Hx) . (16)

The stabilizer formalism given in Eq. (16), can be inter-

preted as a pair of binary PCMs Hz and Hx . However,

a pair of Hz and Hx only can be translated into quantum

stabilizer codes, if they satisfy the symplectic criterion given

by [21], [22]

HzH
T
x + HxH

T
z = 0. (17)

The CSS codes constitute a special class of QSCs. More

specifically, the construction of a C[n, k1 − k2] CSS code,

which is capable of correcting t qubit errors including the

bit-flip as well as phase-flip errors, can be derived from the

pair of classical linear block codes C1(n1, k1) and C2(n2, k2)

if C2 ⊂ C1, where both C1 and the dual pair of C2,
3 denoted

by C⊥
2 , are capable of correcting t bit errors. For the CSS code

constructions, the PCM Hz is obtained from the PCM of C1
invoked for handling bit-flip errors, while the the PCM Hx is

obtained from the dual C⊥
2 is used for correcting the phase-flip

errors. Since the phase-flip and bit-flip errors are treated sepa-

rately in quantum CSS code constructions, the corresponding

PCMs for stabilizer matrices of Hz and Hx are given by

Hz =
(
H′
z

0

)
and Hx =

(
0

H′
x

)
, respectively. Consequently,

the binary PCM H is defined as

H =
(
H′
z 0

0 H′
x

)
. (18)

Moreover, since we have C2 ⊂ C1, the symplectic crite-

rion of Eq. (17) can be reduced to H′
zH

′
x
T = 0. Further-

more, if the construction satisfies H′
z = H′

x , the resul-

tant codes are defined as dual-containing quantum CSS

codes, or self-orthogonal quantum CSS codes because

H′
zH

′
z
T = 0, or equivalent to C⊥

1 ⊂ C1.

Again, the classical code constructions can be readily

transformed into their quantum version provided that they

satisfy the symplectic criterion of Eq. (17). The latter con-

straint prevents us from transplanting some well-known clas-

sical codes into the quantum domain. However, fortunately

this limitation can be relaxed by utilizing the family of

entanglement-assisted quantum stabilizer codes (EA-QSCs)

[48], [49]. The luxury of being able to transform every

type of classsical codes into quantum codes does not come

without cost. Invoking the EA-QSC construction requires

preshared maximally-entangled qubits before encoding

2To avoid ambiguity concerning the classical and quantum coding nota-
tion, the notation C(n, k) will be used to address classical codes and C[n, k]
for quantum codes.

3The dual pair of the linear binary code C1 ⊂ F
n
2
is defined by a linear

binary code C2 = {c2 ∈ F
n
2
|〈c1, c2〉 = 0,∀c1 ∈ C1}, where 〈c1, c2〉

represents the inner product between c1 and c2.

FIGURE 3. The classification and characterization of QSCs, where CSS
stands for Calderbank-Shor-Steane and EA for entanglement assisted.

procedure as detailed in [49]. However, the mechanism of

presharing the maximally-entangled qubits allows us to trans-

form a set of non-symplectic QSCs into their symplectic

counterpart. For a crystal clear illustration, the classification

and characterization of the QSCs is summarized in Fig. 3.

For more a detailed history and important milestones of the

QSCs field, please refer to [55] and [58].

IV. PROTECTING A SINGLE QUBIT: DESIGN EXAMPLES

In Section I, we have already mentioned the three pioneering

contributions on QSCs, which are only capable of handling a

single qubit error, while in Section III, we briefly highlighted

the different types of QSC constructions. In this section,

we will link up both ideas in a more concrete context.

A. CLASSICAL AND QUANTUM 1/3-RATE

REPETITION CODES

Before we delve deeper into the aforementioned QSCs, let us

commence with a simple 1/3-rate classical repetition codes,

which maps a binary digit of ‘‘0’’ or ‘‘1’’ into a vector that

contains three replicas of each binary digit as

0
G−→

(
0 0 0

)
,

1
G−→

(
1 1 1

)
. (19)

In classical codes, the mapping of information words into

codewords may be described using the generator matrix G

as encapsulated below:

y = x ∗ G, (20)

where y denotes the vector of an n-bit codeword, x is the

k-bit original information word and ∗ represents the matrix

multiplication over modulo-2. Hence, the generator matrixG

is a (k × n)-element matrix, which may be decomposed into

a systematic form as

G = (Ik |P) , (21)

where Ik is a (k × k) identity matrix and P is a k × (n −
k)-element matrix. The form given in Eq. (21) represents

systematic linear block codes since, the codeword consists

of k-bit information word followed by (n−k) parity bits. Each
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generator matrix G corresponds to an (n − k) × n-element

PCM H, which is defined as

H =
(
PT |In−k

)
. (22)

The PCM of H is constructed for ensuring that y is a valid

codeword if and only if

y ∗ HT = 0. (23)

A received word ŷ may be contaminated by an error vector e

due to the channel impairments, so that ŷ = y + e. The error

syndrome s is a vector of length (n − k) that is obtained by

following calculation:

s = ŷ ∗ HT = (y + e) ∗ HT

= y ∗ HT + e ∗ HT

= 0 + e ∗ HT

= e ∗ HT . (24)

In simple terms, we have 2k legitimate codewords represent-

ing k information bits, 2n possible received bit patterns of ŷ,

and 2(n−k) syndromes of s each unambiguously identifying

one of the 2(n−k) error patterns, including the error-free

scenario.

Hence, from this brief description of basic classical codes,

the mapping in Eq. (19) can be encapsulated into a generator

matrix G as given below:

G =
(
1 1 1

)
. (25)

From the generator matrix G given in Eq. (25) and the PCM

formulation given in Eq. (21), we obtain the PCM H for a

1/3-rate classical repetition code encapsulated by

H =
(
1 1 0

1 0 1

)
, (26)

where the first row returns the first bit of the two bits

syndrome value and acccordingly the second row evaluates

the second bit. Thus, it can be easily checked by using the

syndrome computation of Eq. (24) that the syndrome value

of (0 0) is obtained if the received word ŷ is equal to the valid

codeword, either (0 0 0) or (1 1 1). The syndrome computa-

tion yields a syndrome vector with (n − k)-element and in

this case for a 1/3-rate classical repetition code, it generates a

synfrome vector with two elements. Therefore, there are four

possible outcomes from the syndrome computation and one

of them indicates the error-free received word, which is the

(0 0) syndrome. Since a 1/3-rate classical repetition code is

considered as a short block code, the syndrome computation

and the associated error pattern is readily checked using a

look-up table, namely Table. 1.

Next, we proceed with with a simple 1/3-rate quantum

repetition code that capable of recovering a bit-flip error. Let

us assume that we have a quantum state |ψ〉 = α0|0〉+α1|1〉.
As the consequence of the No Cloning Theorem of quantum

mechanics, there is no unitary transformation U capable

of mapping an arbitrary quantum state |ψ〉 onto a state of

|ψ〉 = |ψ〉⊗3. Hence, the code mapping of quantum

TABLE 1. Syndrome computation and the associated error pattern for a
1/3-rate classical repetition code.

state |0〉 and |1〉 by a unitary transformation U is defined

by

|0〉 → |000〉,
|1〉 → |111〉. (27)

In a more general scenario, the mapping of k logical qubits to

n physical qubits is encapsulated as follows:

|ψ〉 ⊗ |0〉⊗(n−k) U−→ |ψ〉 = α0|0〉L + α1|1〉L , (28)

where |0〉L denotes the encoded state of the logical qubit

|0〉, |1〉L denotes the encoded state of logical qubit |1〉,
while |0〉⊗n−k represents the auxiliary or the redundant

qubits (ancillas), and the superscript of ⊗ (n − k) repre-

sents (n − k)-fold of tensor products. Hence, for 1/3-rate

quantum repetition codes, the state of the logical qubit |ψ〉
corresponds to the state of the physical qubit |ψ〉 as given

by

(α0|0〉 + α1|1〉)⊗ |0〉⊗2 U−→ |ψ〉 = α0|000〉 + α1|111〉,
(29)

where the |000〉 defines the encoded logical qubit |0〉L and

|111〉 defines the |1〉L . Again, it is important to bear in mind

that the state of |ψ〉 = α0|000〉 + α1|111〉 is not equal to

|ψ〉 = |ψ〉⊗3. More explicitly, this relationship can also be

expressed as |ψ〉 = α0|000〉 + α1|111〉 6= |ψ〉⊗3. The state

of the physical qubits of the 1/3-rate quantum repetition code

is stabilized, or synonymously ’parity-checked’ by the pair

of stabilizer operators g1 = ZZI and g2 = ZIZ. A valid

codeword or a valid encoded state, which is not affected

by the stabilizer operators g1 and g2, has an input state of

|ψ〉 and returns the state of |ψ〉, hence it yields the so-

called eigenvalues of +1, and more explicitly, it is described

below:

g1|ψ〉 = α0|000〉 + α1|111〉 ≡ |ψ〉,
g2|ψ〉 = α0|000〉 + α1|111〉 ≡ |ψ〉. (30)

By contrast, if the stabilizer operators g1 and g2 are applied

to the corrupted states |ψ̂〉, they both yield eigenvalues that

are not in the all one state. For instance, let us assume

that we received a corrupted state having a bit-flip error

imposed on the first qubit of |ψ〉 yielding |ψ̂〉 = α0|100〉 +
α1|011〉. Then, upon applying the stabilizer operators g1 =
ZZI and g2 = ZIZ to the state of |ψ̂〉, it may be read-

ily showed after few steps that we arrive at the following
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TABLE 2. Single qubit bit-flip errors along with the associated eigenvalues in 1/3-rate quantum repetition where the eigenvalues act similarly with the
syndrome values in classical linear block codes.

eigenvalues:

g1|ψ̂〉
= ZZI(α0|100〉 + α1|011〉)

=




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




.




0

0

0

α1
α0
0

0

0




=




0

0

0

−α1
−α0
0

0

0




≡ −α0|100〉 − α1|011〉 ≡ −|ψ̂〉, (31)

g2|ψ̂〉
= ZIZ(α0|100〉 + α1|011〉)

=




1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 1




.




0

0

0

α1
α0
0

0

0




=




0

0

0

−α1
−α0
0

0

0




≡ −α0|100〉 − α1|011〉 ≡ −|ψ̂〉. (32)

The resultant eigenvalues of ±1 act similarly to the syn-

drome vector of classical codes, where the eigenvalue +1

is associated with the classical syndrome value 0 and the

eigenvalue −1 with the classical syndrome value 1. More

explicitly, the single qubit error patterns imposed on the

1/3-rate quantum repetition codes and the associated eigen-

values are portrayed in Table. 2. However, this specific

construcion is only capable of detecting and correcting a

single bit-flip error imposed by the Pauli channel on the

physical qubits, but no phase-flips.

Since the physical qubits may experience not only bit-

flip errors, but also phase-flip errors as well as both bit-flip

and phase-flip errors, different mapping is necessitated to

protect the physical qubits from phase-flip error. In order to

protect the physical qubits from a phase-flip error, we may

require a different basis but we can still invoke a similar

approach. To elaborate further, the Hadamard transforma-

tion (H) maps the computational basis of {|0〉, |1〉} onto the

Hadamard basis of {|+〉, |−〉}, where the state of |+〉 and |−〉
are defined as

|+〉 ≡ H|0〉 =
1

√
2
(|0〉 + |1〉), (33)

|−〉 ≡ H|1〉 =
1

√
2
(|0〉 − |1〉), (34)

and the unitary Hadamard transformation H, which acts on a

single qubit state, is given by

H =
1

√
2

(
1 1

1 −1

)
. (35)

A phase-flip error defined over the Hadamard basis of

{|+〉, |−〉} acts similarly to the bit-flip error defined over the

computational basis of {|0〉, |1〉}. Hence, for handling of a

single phase-flip error, the codemapping of 1/3-rate quantum

repetition codes are given by

|0〉 → | + ++〉,
|1〉 → | − −−〉. (36)

Hence, the logical qubit of |ψ〉 corresponding to the physical
qubits |ψ〉 is given by

|ψ〉 ⊗ |0〉⊗2 U−→ |ψ〉 = α0| + ++〉 + α1| − −−〉. (37)

The state of physical qubits given in Eq. (37) can be stabilized

by the operators g1 = XXI and g2 = XIX. The detection and

correction of a phase flip error can be carried out in analogy

with the 1/3-rate quantum repetition code for handling the

bit-flip error.

As seen in Eq. (16), the stabilizer operators can be

derived from the classical PCM H by mapping the Pauli
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FIGURE 4. The circuit representation of the CNOT unitary transformation.

matrices I, X, Y and Z onto (F2)
2 as follows:

I →
(
0 | 0

)
,

X →
(
0 | 1

)
,

Y →
(
1 | 1

)
,

Z →
(
1 | 0

)
. (38)

Each row ofH is associated with a stabilizer operator gi ∈ H,

where the i-th column of both Hz and Hx corresponds to the

i-th qubit and the binary 1 locations represent the Z and X

positions in the PCMs Hz and Hx , respectively. For instance,

for the 1/3-rate quantum repetition code, which is stabilized

by the operators g1 = ZZI and g2 = ZIZ, the PCM H is

given as follows:

H =
(
1 1 0 0 0 0

1 0 1 0 0 0

)
. (39)

Since the 1/3-rate quantum repetition code in this example

can only correct a bit-flip (X) error, which is stabilized by the

Z operators, the PCM Hx contains only zero elements. The

same goes for a 1/3-rate quantum repetition code conceived

for handling a phase-flip (Z) error, which is stabilized by

the operators g1 = XXI and g2 = XIX. The PCM H

corresponding to this particular QSC is defined as follows:

H =
(
0 0 0 1 1 0

0 0 0 1 0 1

)
. (40)

It is clearly shown in Eq. (39) and (40) that the PCM of

a 1/3-rate quantum repetition code is similar to that of the

1/3-rate classical repetition code given in Eq. (26).

In order to encode the logical qubits into physical qubits,

we require the unitary transformation U acting as the quan-

tum encoding circuit. To represent the quantum encoding

circuit, one of the essential components is the controlled-NOT

(CNOT) quantum gate. A CNOT quantum gate manipulates

the state of a two-qubit system and it can be represented by a

unitary transformation as follows:

CNOT =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


 . (41)

The circuit representation of the CNOT quantum gate is

depicted in Fig 4, which manipulates the state of two qubits

and it can be formulated as follows:

CNOT(|a0, a1〉) ≡ |a0, (a0 ⊕ a1)〉, (42)

FIGURE 5. The encoding circuit of the 1/3-rate quantum repetition code
protecting the physical qubits from a bit-flip error.

where the notation of ⊕ represents the modulo-2 addition.

For instance, by using the CNOT representation in Eq. (41),

a logical qubit in the superimposed state of |ψ〉 = α0|0〉 +
α1|1〉 and a qubit in the pure state of |0〉 are manipulated by

the quantum CNOT gate into following state:

CNOT(|ψ〉, |0〉) = CNOT(α0|0〉 + α1|1〉, |0〉)
= CNOT(α0|00〉 + α1|10〉)

=




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


 .




α00
0

α10
0




=




α0
0

0

α1


 ≡ α0|00〉 + α1|11〉. (43)

Similarly, we may also use the CNOT definition given in

Eq. (42) to determine the resultant state as described below:

CNOT(|ψ〉, |0〉) = CNOT(α0|0〉 + α1|1〉, |0〉)
= CNOT(α0|00〉 + α1|10〉)
= α0|0, (0 ⊕ 0)〉 + α1|1, (1 ⊕ 0)〉
= α0|00〉 + α1|11〉. (44)

In this configuration, the first qubit is referred to as the control

qubit, while the second one is referred to as the target qubit.

The value of the target qubit is flipped if the value of the

control qubit is equal to ‘‘1’’. We can observe that the CNOT

quantum gate behaves similarly to the exclusive OR (XOR)

gate of the classical computer.

For the sake of creating the encoded state of 1/3-rate

quantum repetition code, we require a single logical qubit and

two ancillas prepared in the pure state of |0〉, as described in

Eq. (29). In the first step, the CNOT unitary transformation

is performed between the logical qubit and the first ancilla,

in which the logical qubit acts as the control qubit and the

ancilla as the target qubit. The same step is repeated during

the second stage between the logical qubit and the second

ancilla, where the second ancilla is also preserved as the target

qubit. Therefore, the encoding circuit of the 1/3-rate quantum

repetition code can be represented as in Fig 5, which was
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FIGURE 6. The encoding circuit of the 1/3-rate quantum repetition code
protecting the physical qubits from a phase-flip error.

designed for protecting the physical qubits from a single bit-

flip error, as also seen in the mapping given in Eq. (27). For

its 1/3-rate quantum repetition code counterpart protecting

the physical qubits from a phase-flip error, we require the

Hadamard transformation to obtain the mapping given in

Eq. (36). Hence, we can readily create the encoding circuit for

a 1/3-rate quantum repetition code for protecting the physi-

cal qubits from a phase-flip error by placing the Hadamard

transformations after the second stage as portrayed in Fig. 6.

B. SHOR’s 9-QUBIT CODE

Since, we have elaborated briefly on the construction of QSCs

along with the Pauli to binary isomorphism, we may now

proceed with the corresponding examples of different QSC

constructions conceived for protecting the physical qubits

from any type of a single qubit error. Firstly, we start with the

Shor’s code [16]. In order to protect the qubits from any type

of single qubit error, a logical qubit is mapped onto nine phys-

ical qubits. This code may also be viewed as a concatenated

version of two 1/3-rate quantum repetition codes, where the

first stage is dedicated to the protection of the physical qubits

from phase-flip errors, while the second stage is invoked for

handling the bit-flip errors. To elaborate further, at the first

stage of Shor’s code, the state of a logical qubit is encoded by

using the followingmapping: |0〉 → |+++〉, |1〉 → |−−−〉.
At the second stage, we encode each of the states of |+〉 to the
state of (|000〉 + |111〉) /

√
2, while the state of |−〉 is mapped

to the state of (|000〉 − |111〉) /
√
2. Therefore, the final state

of the encoded logical qubits |0〉L and |1〉L are encapsulated

as follows:

|0〉L =
1

√
2
(|000〉 + |111〉)⊗

1
√
2
(|000〉 + |111〉)

⊗
1

√
2
(|000〉 + |111〉)

=
1

2
√
2
(|000000000〉 + |000000111〉 + |000111000〉

+ |000111111〉 + |111000000〉 + |111000111〉
+ |111111000〉 + |111111111〉), (45)

|1〉L =
1

√
2
(|000〉 − |111〉)⊗

1
√
2
(|000〉 − |111〉)

⊗
1

√
2
(|000〉 − |111〉)

FIGURE 7. The encoding circuit of Shor’s 9-qubit code.

TABLE 3. The eight stabilizer operators g1 to g8 of Shor’s 9-qubit code,
which stabilizes a single logical qubit with the aid of eight auxiliary
qubits.

=
1

2
√
2
(|000000000〉 − |000000111〉 − |000111000〉

+ |000111111〉 − |111000000〉 + |111000111〉
+ |111111000〉 − |111111111〉). (46)

Based on the given description, the encoding circuit of Shor’s

code is portrayed in Fig. 7. The state determined by the nine

physical qubits of Shor’s code, where the latter defined in

Eq. (45) and (46), is stabilized by the eight stabilizer operators

which are listed in Table 3.

To elaborate a little further, Shor’s code is a member of the

class of non-dual-containing CSS codes. Explicitly, it belongs
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to the class of CSS codes because the stabilizer formalism of

Shor’s code implies that the code handles the Z error and the

X error separately, whilst it is a non-dual-containing because

the PCMs Hz and Hx are not identical. Based on the list of

stabilizer operators given in Table 3, the PCM H of Shor’s

code is given in Eq. (47), as shown at the bottom of this

page, where each row of the PCM corresponds to each of the

stabilizer operators listed in Table 3.

The quantum coding rate (rQ) of a quantum code C[n, k]

is defined by the ratio of the number of logical qubits k to

the number of physical qubits n, which can be formulated

as

rQ =
k

n
. (48)

Hence again, for a Shor’s 9-qubit code the quantum coding

rate is rQ = 1/9.

C. STEANE’s 7-QUBIT CODE

Steane’s code was proposed to protect a single qubit from any

type of error by mapping a logical qubit onto seven physical

qubits, instead of nine qubits. In contrast to Shor’s code,

Steane’s code is a dual-containing CSS code, since the PCMs

Hz andHx are equal to that of clasical Hamming codeHHam,

which is given by

HHam =



1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1


 . (49)

It can be confimed that the classical Hamming code is

a dual-containing code, because it satisfies the condition

HHam.H
T
Ham = 0. Therefore, the PCM H of Steane’s code

is defined as shown in Eq. (50), as shown at the bottom of

this page.

Since Steane’s code is a member of the dual-containing

CSS codes, the encoded state of the logical qubit |0〉L and

|1〉L may be determined from its classical code counterpart.

Let C1(7, 4) be the Hamming code and C2(7, 3) be its dual.

Both of the codes are capable of corrrecting one bit error.

TABLE 4. The code space of C1 and C2 for determining the encoded state
of the Steane’s code.

Hence, the resultant CSS quantum code derived from these

codes, namely the C[n, k1 − k2] = C[7, 1], also capable of

correcting a single qubit error. For Steane’s code the states of

encoded logical qubit of |0〉L and |1〉L are defined as follows:

|0〉L =
1

√
|C2|

∑

x∈C1,C2

|x〉, (51)

|1〉L =
1

√
|C2|

∑

x∈C1,x /∈C2

|x〉. (52)

Since C2 is the dual of C1, by definition the PCM of C2,

denoted by H(C2) is the generator matrix of C1, denoted by

G(C1). Hence, the parity-check matrix of C2 can be written

as

H(C2) = G(C1) =




1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1


. (53)

Based on the PCMgiven in Eq. (49) and (53), we can define

the code space of C1 and C2, which is described in Table 4.

Finally, using Eq. (51), (52), and also the code space given

in Table 4, the encoded states of the logical qubit |0〉L

HShor =




1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1




. (47)

HSteane =
(
HHam 0

0 HHam

)
=




1 1 0 1 1 0 0 0 0 0 0 0 0 0

1 0 1 1 0 1 0 0 0 0 0 0 0 0

0 1 1 1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 1 1 0 0

0 0 0 0 0 0 0 1 0 1 1 0 1 0

0 0 0 0 0 0 0 0 1 1 1 0 0 1



. (50)
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TABLE 5. The stabilizer formalism of the Steane’s 7-qubit code.

TABLE 6. The stabilizer formalism of the perfect 5-qubit code.

and |1〉L of the Steane’s code are as follows:

|0〉L =
1

2
√
2
(|00000000〉 + |0111001〉 + |1011010〉

+ |1100011〉 + |1101100〉 + |1010101〉
+ |0110110〉 + |0001111〉), (54)

|1〉L =
1

2
√
2
(|1111111〉 + |1000110〉 + |0100101〉

+ |0011100〉 + |0010011〉 + |0101010〉
+ |1001001〉 + |1110000〉). (55)

It can be readily seen that the quantum coding rate of Steane’s

7-qubit code is 1/7. The encoding circuit of the Steane’s

1/7-rate code can be found in [72].

D. LAFLAMME’s 5-QUBIT CODE - THE PERFECT CODE

Laflamme’s code maps a single logical qubit onto a five

physical qubits. Laflamme’s code is also referred to as the

‘‘perfect code’’, because it has been proven that in order to

protect a logical qubit, the lowest number of physical qubits

required is five [19], [20]. The perfect 5-qubit code is a non-

CSS code, since the stabilizer formalism is designed to handle

the Z errors and X errors simultaneously. There are several

existing designs related to the perfect 5-qubit code [18], [71]

and in this treatise, we use the PCM formulation given

in [71]. Explicitly, its non-CSS characteristics can be readily

observed from the PCM Hperfect of the 5-qubit perfect code,

which is specified as follows:

Hperfect =




0 1 1 0 0 1 0 0 1 0

0 0 1 1 0 0 1 0 0 1

0 0 0 1 1 1 0 1 0 0

1 0 0 0 1 0 1 0 1 0


 .

(56)

Hence, the stabilizer operators of the 5-qubit code may be

explicitly formulated as in Table 6. In general, the states of

TABLE 7. List of valid stabilizer operators for determining the encoded
state of the 5-qubit code.

encoded logical qubit of QSCs are defined as follows:

|0〉L =
∑

gi∈S
gi|0〉⊗N , (57)

|1〉L = X|0〉L . (58)

The stabilizers gi ∈ S includes all the valid stabilizer

operators of the quantum code C, which covers not only the

stabilizer operators that are listed in Table 6. Because of the

commutative property of the stabilizer formalism, the prod-

uct of any two stabilizer operators generates another valid

stabilizer operator. Table 7 provides a list of all the possible

combinations of the stabilizer operators, which includes the

stabilizer operator of g0 = IIIII, and also the respective

transformation upon the state of |0〉⊗5 = |00000〉. The
notation ofX denotes the logical operatorX. Explicitly, in this

case for the 5-qubit code the logical operator representing

the encoded state of the logical qubit is X = XXXXX. The

logical operator is represented by an N -fold application of

Pauli matrices that commutes with all stabilizer operators, but

it is not a part of the set of valid stabilizer operators S . The

resultant quantum coding rate of the 5-qubit code is rQ = 1/5.

The encoded state mapping for the 5-qubit quantum code

based on the Eq. (57), (58). Hence, the corresponding states,

which are described in Table 7, are defined below:

|0〉L =
1

4
(|00000〉 + |10010〉 + |01001〉 + |10100〉

+ |01010〉 − |11011〉 − |00110〉 − |11000〉
− |11101〉 − |00011〉 − |11110〉 − |01111〉
− |10001〉 − |01100〉 − |10111〉 + |00101〉), (59)

|1〉L =
1

4
(|11111〉 + |01101〉 + |10110〉 + |01011〉

+ |10101〉 − |00100〉 − |11001〉 − |00111〉
− |00010〉 − |11100〉 − |00001〉 − |10000〉
− |01110〉 − |10011〉 − |01000〉 + |11010〉). (60)

The same method can be utilized for determining the

encoded state of logical qubit for Shor’s code and Steane’s

code. However, both Shor’s code and Steane’s code offer a

more simplistic approach for determining their correspond-

ing encoded states. The description for the efficient encod-

ing circuit of the 1/5-rate Laflamme’s code can be found

in [18], [73], and [74].
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FIGURE 8. QBER performance of the QSCs protecting a single qubit,
namely Shor’s 9-qubit code, Steane’s 7-qubit code, and the perfect
5-qubit code, recorded for the quantum depolarizing channel. The
similarity of performances is due to the fact that all of the QSCs rely on
hard-decision syndrome decoding and they all have the same error
correction capabilities.

Based on the aforementioned constructions, we evaluated

the performance of the QSCs by simulation, in the context of

quantum depolarizing channel. The performance of 9-qubit

Shor’s code, 7-qubit Steane’s code and 5-qubit Laflamme’s

code are portrayed in Fig. 8 in terms of the qubit error

rate (QBER) on given depolarizing probability (p). From the

simulation result, it can be observed clearly that the perfor-

mance of all three QSCs are quite similar. The similarity in

performances are expected because all of the codes have the

same error correction capability of correcting single qubit

error. In addition, they utilize the hard decision decoding

based on syndrome measurement. From this result, we may

conclude that for different codes with the same error correc-

tion capability, where in classical coding theory it will be

translated into the minimum distance property, they are asso-

ciated with similar performances eventhough all of the codes

have different codeword length. In this case, all of the QSCs

have a single qubit error correction capability (t = 1), and it

may be translated as the minimum distance of three (d = 3),

but having different codeword length, 9-qubit, 7-qubit and

5-qubit for Shor’s code, Steane’s code and Laflamme’s code,

respectively. Another fact that we should point out that the

three codes exhibit different code constructions. Shor’s code

belongs to non dual-containing CSS codes, while Steane’s

code is a member of dual-containing CSS codes, and finally,

Laflamme’s code or the perfect 5-qubit code has a construc-

tion of non-CSS codes.

V. ON CLASSICAL TO QUANTUM CODING BOUNDS

In this section, we present the classical to quantum transfor-

mation of the most well-known coding bounds, namely the

Singleton bound [75] and Hamming bound [76], which serve

as the upper bounds, as well as the Gilbert-Varshamov (GV)

bound [77], which acts as the lower bound. Although, there

are several ways of deriving the coding bounds in the quan-

tum domain, we are interested exploring the duality of cod-

ing bounds in classical and quantum domain. Therefore,

we present the derivation of quantum coding bounds using the

classical to quantum isomorphism approach and demonstrate

that the final results agree with the coding bounds that are

derived from a purely quantum domain perspective.

A. SINGLETON BOUND

The Singleton bound of classical binary code constructions

C(n, k) is defined as

n− k ≥ d − 1, (61)

where the notation n denotes the codeword length, k for

the length of information bits, and d for minimum distance

amongst the codewords in codebook C. Singleton bound acts

as an upper bound in classical code constructions. The bound

implies that the number of rows in a PCM associated with

the length of syndrome vector, which is equal to (n− k), has

to be greater than (d − 1). For the QSC C[n, k], the rows of

PCM correspond to the number stabilizer operators. Since the

stabilizer formalism has to correct both the bit-flip errors and

the phase-flip errors, the classical Singleton bound of Eq. (61)

can be readily transformed into the quantum Singleton bound

as follows:

n− k ≥ 2(d − 1), (62)

where n nowmay also be referred to as the number of physical

qubits and k as the number of logical qubits. In order to show

explicitly the trade-off between theminimumdistance and the

quantum coding rate, Eq. (62) can be modified to

k

n
≤ 1 − 2

(
d − 1

n

)
. (63)

In the quantum domain, the Singleton bound is also known

as the Knill-Laflamme bound [78]. The QSCs achieving the

quantum Singleton bound by satisfying the equality are clas-

sified as the quantum Maximum Separable Distance (MDS)

codes. One of the well-known QSCs having a minimum

distance d = 3 that reaches the quantum Singleton bound

is the perfect 5-qubit code C[n, k, d] = C[5, 1, 3].

B. HAMMING BOUND

In classical binary coding, a codebook C(n, k) maps the infor-

mation words containing k bits into a codeword of length n

bits. The maximal number of errors, which is denoted by t

that can be corrected by codebook C is given by

t = ⌊
d − 1

2
⌋. (64)

Therefore the maximum size of a binary codebook |C| = 2k

is bounded by the sphere-packing bound which is defined as:

2k ≤
2n

t=⌊ d−1
2 ⌋∑

j=0

(
n
j

)
. (65)

Since the QSCs have to correct three different types of error

namely the bit-flip errors (X), phase-flip errors (Z), as well
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as both bit-flip and phase-flip errors (Y), the size of the

codebook for a quantum code C[n, k] is now bounded by

2k ≤
2n

t=⌊ d−1
2 ⌋∑

j=0

(
n
j

)
3j

. (66)

By modifying Eq. (66), we can express explicitly the bound

of the quantum coding rate as a function of the minimum

distance d and codeword length n, as shown below:

k

n
≤ 1 −

1

n
log2



t=⌊ d−1

2 ⌋∑

j=0

(
n

j

)
3j


 . (67)

If n tends to ∞, we obtain

k

n
≤ 1 −

(
d

2n

)
log2 3 − H

(
d

2n

)
, (68)

where H (x) is the binary entropy of x formulated as H (x) =
−x log2 x − (1 − x) log2(1 − x). Equation (67) and (68) are

also known as the quantum Hamming bound [20], which also

constitutes the upper bound of quantum code constructions.

C. GILBERT-VARSHAMOV BOUND

The same analogy exploited to derive the quantum Ham-

ming bound may also be used for transforming the classical

Gilbert-Varshamov (GV) bound, namely the lower bound for

classical code constructions, into its quantum counterpart.

In the classical domain, the GV bound is formulated as

2k ≥
2n

d−1∑
j=0

(
n
j

) . (69)

Considering that the quantum codes have to tackle three

different types of errors, the size of the codebook C[n, k] is

bounded by

2k ≥
2n

d−1∑
j=0

(
n
j

)
3j

. (70)

Hence, we can readily derive the quantum GV bound,

the lower bound of the quantum coding rate as a function of

the minimum distance d and codeword length n as follows:

k

n
≥ 1 −

1

n
log2



d−1∑

j=0

(
n

j

)
3j


 . (71)

Again, if n aprroaches ∞, we obtain

k

n
≥ 1 −

(
d

n

)
log2 3 − H

(
d

n

)
, (72)

where H (x) is the binary entropy of x. The quantum

GV bounds in Eq. (71) and (72) are valid for non-CSS

QSCs. However, a special case should be considered for

dual-containing quantum CSS codes. It will be shown in

Section VII that for some dual-containing CSS codes the

code constructions violate the quantum GV bound. Hence,

a special bound has to be derived to accomodate the dual-

containing CSS codes. In the classical domain, a binary code

C(n, k) maps a k-bit information word into an n-bit encoded

codeword. The number of syndrome measurement operators

is determined by the number of rows in the parity-check

matrix C(n, k), which is equal to (n− k). With a simple mod-

ification of Eq. (69), the number of syndrome measurement

operators in C(n, k) is bounded by

2(n−k) ≤



d−1∑

j=0

(
n

j

)
 . (73)

Recall that the dual-containing quantum CSS codes rely

on dual-containing classical binary codes, which satisfy the

symplectic criterion of Eq. (17) and also comply with the

constraint of Hz = Hx . Explicitly, half portion of the sta-

bilizer operators of C[n, k] are mapped onto Hz, while the

other half are mapped onto Hx . Therefore, the number of the

stabilizer operators of a dual-containing quantum CSS code

are bounded by

2
(n−k)
2 ≤



d−1∑

j=0

(
n

j

)
 . (74)

Based on Eq. (74), we may formulate the lower bound on the

quantum coding rate of a dual-containing quantum CSS code

as follows:

k

n
≥ 1 −

2

n
log2



d−1∑

j=0

(
n

j

)
 . (75)

As n approaches ∞, we obtain the quantum GV bound for

CSS codes, as suggested in [66], which is formulated as

k

n
≥ 1 − 2H

(
d

n

)
, (76)

where H (x) is the binary entropy of x. Based on the dis-

cussions above, we compare the asymptotic classical and

quantum coding bounds in Table. 8 as well as in Fig. 9. Since

the QSCs are designed to mitigate both bit-flip errors as well

as phase-flip errors, the bounds of QSCs are significantly

lower than those of their classical counterparts. Nevertheless,

the general conception still holds, the Singleton bound serves

as the loose upper bound, whilst the Hamming bound is the

tighter upper bound.

VI. QUANTUM CODING BOUNDS ON

ASYMPTOTICAL LIMIT

Although the classical to binary isomorphism assists us in

the development of QSCs from the well-known classical

code designs, the issue of determining the actual achieavable

minimum distance, given the coding rate and the codeword

length still remains unresolved. In the classical domain as

we described previously, finding the unique solution to the

realistically achievable minimum distance of binary classi-

cal codes is still an open problem, even though the upper
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TABLE 8. Comparison of various classical and quantum coding bounds.

TABLE 9. The coding bounds for classical code constructions, with a minor modification from [65].

FIGURE 9. The evolution from asymptotic classical binary coding bounds
to the asymptotic quantum coding bounds.

bound and lower bound of the quantum coding rate versus

the achievable minimum distance can be found in the litera-

ture [75]–[77], [79], [80]. The bounds for the classical code

constructions are listed in Table. 9, while the corresponding

asymptotic bounds are also plotted in Fig. 10. In the classical

domain, the tightest lower bound was derived by Gilbert [77].

The Hamming bound [76] serves as a tight upper bound for

high coding rates, while the McEliece-Rodemich-Rumsey-

Welch (MRRW) bound [79] serves as the tightest upper

bound for moderate and low coding rates. As seen in Fig. 10,

the gap between the tight upper bounds and the lower bound

is quite narrow. It was observed in [65] that a simple quadratic

expression r(δ) = (2δ− 1)2, where δ denotes the normalized

minimum distance d/n, satisfies all the known asymptotic

bounds.

The well-known bounds for QSC constructions are listed

in Table. 10 and they are also portrayed in Fig. 11. The

quantum Singleton bound serves as the loose upper bound,

the quantum Hamming bound as a tighter upper bound, and

quantum GV bound as the tightest lower bound. However,

a wide discrepancy can be observed between the upper bound

and the lower bound. For the sake of narrowing this gap,

the quantum Rain bound was derived using quantum weight

enumerators [81]. To elaborate a little further, the quantum

Rain bound states that any quantum code of length n can

correct at most ⌊ n−1
6

⌋ errors. The resultant bound is only a

function of codeword length n. Hence, under the asymptotic

11572 VOLUME 5, 2017



D. Chandra et al.: Quantum Coding Bounds and a Closed-Form Approximation

TABLE 10. The well-known quantum coding bounds found in the literature.

FIGURE 10. The trade-off between classical coding rate r and normalized
minimum distance δ as described by classical binary coding bounds.
A simple quadratic function r (δ) = (2δ − 1)2, which satisfies all of the
bounds, acts as a closed-form approximation for classical binary error
correction codes as suggested in [65].

limit, the quantum Rain bound is a straigthline at δ = 1/3,

which does not exhibit any further trade-off between the

quantum coding rate and the minimum distance. In order to

enhance the accuracy of the quantum Rain bound, Sarvepalli

and Klappenecker derived a quantum version of Griesmer

bound [70]. By utilizing the quantum Griesmer bound and

also the quantum Rain bound, a stronger bound was created

for CSS type constructions. In this treatise we will refer to

this particular bound as the quantum Griesmer-Rain bound.

For the sake of tightening the upper bound, Ashikhmin and

Litsyn generalized the classical linear programming approach

to the quantum domain using theMacWilliams identities [82].

The resultant quantum linear programming boundwas proven

to be tighter than the quantum Hamming bound in the low

coding rate domain. As the quantum coding rate approaches

zero, the achievable mormalized minimum distance returned

by the quantum Griesmer-Rain bound becomes δ = 0.3333

and that of quantum linear programming bound becomes

δ = 0.3152.

Recall from Section III that the QSCs may exhibit either

a CSS or non-CSS structure. For CSS codes, the minimum

distance is upper-bounded by the quantum Hamming bound

for moderate to high quantum coding rates and by the quan-

tum Griesmer-Rain bound for low coding rates region, while

it is also lower-bounded by the quantum GV bound for CSS

codes. On the other hand, for non-CSS QSCs, the minimum

distance is upper-bounded by the quantum Hamming bound

for moderate to high coding rates and by the quantum linear-

programming bound for low coding rates. It is also lower-

bounded by the quantum GV bound for general quantum

stabilizer codes. Even though substantial efforts have been

invested tightening the gap between the upper and lower

bounds, a significant amount of discrepancy persists. Hence,

creating a simple approximation may be beneficial for giving

us further insights into the realistic construction of QSCs.

Analogous to the classical closed-form approximation

of [65], we also found that there exists a simple closed-form

quadratic approximation, which satisfies all the well-known

quantum coding bounds. Explicitly for quantum stabilizer

codes, the following quadratic function was found to satisfy

all the quantum coding bounds:

rQ (δ) =
32

9
δ2 −

16

3
δ + 1 for 0 ≤ δ ≤ 0.2197. (77)

We will further elaborate on the selection of this function

in Section VIII. It is important to note that the closed-form

approximation is subject to the asymptotical bound for either

CSS type or non-CSS type quantum code constructions. The

closed-form approximation in Eq. (77) offers the benefit of

simplicity and it has the inverse function as given by

δ(rQ) =
3

(√
2 −

√
rQ + 1

)

4
√
2

for 0 ≤ rQ ≤ 1. (78)
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FIGURE 11. The trade-off between quantum coding rate rQ and
normalized minimum distance δ is characterized using quantum coding

bounds. A simple quadratic closed-form rQ (δ) =
32
9

δ2
−

16
3

δ + 1 satisfies

all of the well-known quantum coding bounds, which is portrayed by
black solid lines. The blue dashed lines portrays the upper bounds, while
the red dashed lines denotes the lower bounds.

This closed-form approximation suggests that it is possible to

create a code construction whose minimum distance grows

linearly with the codeword length at the asymptotical limit

since for a given quantum coding rate rQ, it will correspond

to a unique constant value of δ.

VII. QUANTUM CODING BOUNDS ON

FINITE-LENGTH CODES

The asymptotic limits are only relevant for n → ∞. For

practical applications, we require code constructions with

shorter codeword length, which necessitates a different for-

mulation for the quantum coding bounds. Finding a closed-

form approximation will be beneficial for determining the

realistically attainable minimum distance for the given code

parameters. The well-known quantum coding bounds are

listed in Table 10 and also portrayed in Fig. 11. It is clearly

seen that a simple quadratic approximation can satisfy all

the well-known bounds. For the finite-length quantum codes,

we propose the closed-form approximation of

rQ(n, δ) = aδ2 + bδ + c. (79)

To arrive at the closed-form approximation in Eq. (79),

we have to determine three definitive points corresponding to

realistic quantum code constructions. As an example in this

treatise, we use three QSC constructions from the literature

as listed below:

• For uncoded logical qubits and unity rate codewords,

we have

rQ(n, δ) = r(n,
1

n
) = 1. (80)

• For a high coding rate, wewill use the construction given

in [19]. For n = 2j, there is a quantum stabilizer code

construction [n, k, d] = [n, n − j − 2, 3], which can

be used to correct t = 1 error. This code construction

reaches the quantum Hamming bound. For arbitrary n,

it can be written as

rQ(n, δ) = r(n,
3

n
) = 1 −

1

n
log2(n) −

2

n
. (81)

• For a very low coding rate, we are using the quan-

tum stabilizer code constructions derived from quadratic

residues [83], [84]. By using simple linear regression,

we arrive at

rQ(n, δ) = r(n,
2

n
+

1

4
) =

1

n
. (82)

Using the three definitive points from the constructions

given in Eq. (80), (81) and (82), we arrive at a system of three

linear equations, which have a unique value of a, b and c for

an arbitrary value of n. More explicitly, we have

r1 = aδ21 + bδ1 + c, (83)

r2 = aδ22 + bδ2 + c, (84)

r3 = aδ23 + bδ3 + c. (85)

The analytical solution of Eq. (83), (84), and (85) is based on

the following unique parameter values:

a =
(r3 − r2) δ1 + (r1 − r3) δ2 + (r2 − r1) δ3

(δ2 − δ1) (δ3 − δ2) (δ1 − δ3)
, (86)

b =
(r2 − r3) δ

2
1 + (r3 − r1) δ

2
2 + (r1 − r2) δ

2
3

(δ2 − δ1) (δ3 − δ2) (δ1 − δ3)
, (87)

c =
(r3δ2 − r2δ3) δ

2
1 + (r1δ3 − r3δ1) δ

2
2 + (r2δ1 − r1δ2) δ

2
3

(δ2 − δ1) (δ3 − δ2) (δ1 − δ3)
.

(88)

Despite the cluttered appearance of the analytical solution,

it contains a simple closed-form approximation, because the

value of r1, r2, r3, δ1, δ2 and δ3 may be easily calculated

using Eq. (80), (81) and (82). Furthermore, the closed-form

approximation derived for finite-length codewords has an

inverse function of

δ(n, rQ) =
−b−

√
b2 − 4a(c− rQ)

2a
. (89)

The accuracy of the proposed method is now tested for

QSCs having codeword length of n = {31, 32, 63, 64,
127, 128} as shown in Fig. 12. The list of practical QSC

constructions which are used in these plots can be seen

in Table. 11.4 The closed-form approximation lies entirely

between the upper and the lower quantum coding bounds.

The practical QSCs are also plotted in the same figure to

show the relative position with respect to the quantum coding

bounds. The QSCs based on [22], [26] lays perfectly on

approximation curves, but it has been observed in [85] that

as the codeword length increases and the quantum coding

rate is reduced, the exact value of the minimum distance

becomes unclear. As depicted in Fig. 12b and 12c, we can

4A comprehensive list of practical quantum stabilizer codes can be found
online at [85]. In this treatise, we only consider quantum stabilizer codes with
definitive minimum distance in the list.
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TABLE 11. The list of QSC constructions that are used to plot practical code in Fig. 12.

hardly find definitive points associated with actual codes to

plot in the low quantum coding-rate region constructed from

quantum GF(4). Meanwhile, the QBCH code constructions

lie quite close to the GV lower bound for dual-containing

CSS codes. As predicted, since the constructions of QBCH

codes rely on dual-containing CSS type constructions, which

employ two separate PCMs for their stabilizer operators,

we expect a lower coding rate compared to their non-CSS

relatives.

The proposed closed-form approximation offers substan-

tial benefits for the development of QSCs.We can readily find

a fairly precise approximation of the realistically achievable

minimum distance for given code parameters. For instance,

for half-rate quantum stabilizer codes of length 128, the min-

imum distance is bounded by 11 < d < 22. By using our

formulation, we obtain d(n = 128, rQ = 1/2) = 16 from our

finite-length approximation. Likewise, for half-rate quantum

stabilizer codes of length 1024, the minimum distance is

bounded by 78 < d < 157. Using our method, we can

obtain d(n = 1024, rQ = 1/2) = 103 from our asymp-

totic bound approximation. One of the logical questions that

may arise concerns the existence of the corresponding codes.

For example, does a half-rate QSCs relying on n = 128

physical qubits and a minimum distance of d = 16 exist?

The answer to this question is not definitive. Let us refer to

the code table given in [85], which is mainly based on the

QSC constructions of [22]. Due to space limitations, we are

unable to capture the entire table and the associated PCM

formulation. However, it is shown in [85] that a half-rate QSC

relying on n = 128 physical qubits indeed exists, although the

minimum distance is only loosely specified by the bounds

of 11 < d < 20. The bound is similar to the quantum GV

bound and to the quantum Hamming bound of the minimum

distance given by 11 < d < 22. By contrast, upon using

our approximation, we have a minimum distance of d = 16,

which is again only an approximation and it does not imply

the existence of a quantum code having a similar minimum

distance. Nonetheless, we believe that our approximation is

beneficial for approximating the attainable QBER perfor-

mance of QSCs based on hard-decision syndrome decoding

for short to moderate codeword length as follows (without

considering degeneracy):

QBER(n, d, p) = 1 −
t=⌊ d−1

2 ⌋∑

i=0

(
n

i

)
pi(1 − p)n−i, (90)

where the realistically achievable value of d is obtained

from our approximation. In our view, the combination of

our closed-form approximation and the QBER of Eq. (90)

constitutes a useful benchmarker for the future develop-

ment of QSCs, since it quantifies the realistically achievable

QBER performance based on hard-decision syndrome-based

decoding.

The evolution of our closed-form approximation as the

codeword length increases for n = {31, 32, 63, 64, 127,
128} can be seen in Fig. 13. By using our example, it can

be clearly observed that as the codeword length increases,

the derived approximation for finite-length codes slowly

approaches the closed-form approximation of the asymp-

totic bound. However, inaccuracies emerge as the codeword

length increases. This phenomenon is due to the fact that

we do not have a definitive QSC constructions to rely on in

the low coding rate region. In our approximation example,

we are using the QSCs from quadratic residues construc-

tion for low coding rate region and the number of QSC

constructions are very limited only for a handful codeword

lengths. Meanwhile in the classsical domain, in the low cod-

ing rate region, we have the simple repetition codes, with con-

struction C(n, 1) having a normalized minimum distance of

δ(n, r) = δ(n, 1
n
) = 1.

Albeit the finite and infinite-length-based approximation

curves start to deviate for a very long codeword n ≫
100, the minimum distance still grows as the codeword

length increases as portrayed in Fig. 14. Both the finite-

length approximation and asymptotic approximation follow

the same trend. For n ≫ 100, we can simply utilize the

asymptotic formulation given in Eq. (77) for calculating the

quantum coding rate for a certain desired minimum dis-

tance, or the inverse of the asymptotic formulation in Eq. (78)

to determine the realistically achievable minimum distance

given the quantum coding rate. We can conclude from this

figure that it is indeed possible to have a QSC construction
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FIGURE 12. Quantum coding rate rQ versus normalized minimum
distance δ for finite-length QSCs. The points for portraying the practical
QSCs are taken from QBCH codes [23], QRM codes [26] and quantum
codes from GF (4) formulation [22]. (a) (n = 31) and (n = 32).
(b) (n = 63) and (n = 64). (c) (n = 127) and (n = 128).

with a growing minimum distance, as the codeword length

increases.

VIII. THE BOUNDS ON ENTANGLEMENT-ASSISTED

QUANTUM STABILIZER CODES

One of the distinctive characteristics of quantum systems,

which does not bear any resemblance with the classical

FIGURE 13. The evolution of our closed-form approximation for
finite-length codewords for various values of codeword length n.

FIGURE 14. The growth of achievable minimum distance for short block
QSCs as the codeword length increasing.

domain is the ability of creating entanglement. This unique

property can be exploited for increasing the achievable min-

imum distance of quantum codes, hence increasing the error

correction capability of QSCs. The EA-QSC constructions

are denoted by C(n, k; c), where c denotes the number of

preshared entangled qubits. It is important to note that even

though the EA-QSCs expand the Pauli group operators from

Gn into Gn+c, we only consider the error operators in Gn.

This is because the paradigm of EA-QSCs assumes that the

preshared entangled qubits are not subjected to transmission

error. Hence, for EA-QSCs, the quantum Hamming bound of

Eq. (66) can be modified to

2k ≤
2n+c

t=⌊ dea−1
2 ⌋∑

j=0

(
n
j

)
3j

, (91)
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TABLE 12. The entanglement-assisted quantum coding bounds found in the literature.

TABLE 13. The asymptotic quantum coding bounds for EA-QSCs given the arbitrary entanglement ratios of θ .

where the notation dea denotes the minimum distance of

EA-QSCs. Equation (91), can be rewritten to show explicitly

the trade-off between quantum coding rate rQ and minimum

distance dea on EA-QSCs as follows:

k

n
≤ 1 −

1

n
log2



t=⌊ dea−1

2 ⌋∑

j=0

(
n

j

)
3j


 +

( c
n

)
. (92)

When n tends to ∞, we yield

k

n
≤ 1 −

(
dea

2n

)
log2 3 − H

(
dea

2n

)
+

( c
n

)
. (93)

As encapsulated in Eq. (93), an additional conflicting param-

eter is involved in determining the quantum coding bounds,

namely the entanglement consumption rate. The entangle-

ment consumption rate E is the ratio between the number

of preshared maximally entangled qubits c to the number of

physical qubits n as encapsulated below:

E =
c

n
. (94)

A maximally entangled5 QSCs requires c = n − k pre-

shared qubit pairs. Hence, for a maximally entangled QSCs,

5For a maximally-entangled QSCs, all of the auxiliary qubits required to
generate the encoded state are already preshared using maximally entangled
pair qubits. Hence, the maximal number of entangled pair qubits that can be
shared beforehand is equal to the total number of auxiliary qubits, which is
equal to (n− k).

the quantumHamming bound of Eq. (93) can be reformulated

as follows by substituting c = n− k into Eq. (93), yielding:

k

n
≤ 1 −

1

2

((
dea

2n

)
log2 3 − H

(
dea

2n

))
. (95)

Let us how consider the more general cases, where we may

have a range of different entanglement ratios 0 ≤ θ ≤ 1.

The entanglement ratio is defined as the ratio of preshared

qubits c to the maximally-entangled preshared qubits (n−k),

yielding:

θ =
c

n− k
. (96)

The quantum Hamming bound for EA-QSCs with arbitrary

entanglement ratios of θ is given by

k

n
≤ 1 −

1

1 + θ

((
dea

2n

)
log2 3 − H

(
dea

2n

))
. (97)

The rest of the quantum coding bounds can readily be

derived using the same analogy. The resultant entanglement-

assisted quantum coding bounds are portrayed in Fig. 15

and 16. By substituting the entanglement ratio of θ = 0,

we arrive again at the quantum coding bounds derived for

unassisted QSCs. By contrast, upon substituting into Eq. (97)

the entanglement ratio θ = 1, we have the quantum coding

bounds for maximally-entangled QSCs. Figure 15 portrays

the bounds on maximally-entangled QSCs. It is observed

in Fig. 15 that at the point (δ = 0.75), the quantum
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FIGURE 15. The asymptotic quantum coding bounds on EA-QSCs for
maximally-entangled constructions. A simple quadratic function
r (δ) =

16
9

δ2
−

8
3

δ + 1 satisfies all of the quantum coding bounds.

GV bound (lower bound) intersects the quantum linear pro-

gramming bound (upper bound). Indeed, it is confirmed

by the quantum Plotkin bound for the maximally-entangled

QSC constructions shown in Table 13 that for asymptotical

maximally-entangledQSCs the highest normalizedminimum

distance that can be achieved is δ = 0.75. Hence, based

on this observation, we propose a simple quadratic function

as the closed-form approximation of entanglement-assisted

quantum stabilizer codes that will satisfy all of the well-

known bounds. A quadratic function associated with a sym-

metry line at (δ = 0.75) and crossing the point of (δ, r) =
(0, 1) is given by

rQ(δ) =
16

9
δ2 −

8

3
δ + 1 for 0 ≤ δ ≤ 0.75. (98)

The simple quadratic approximaton given in Eq. (98), can

also be inverted, yielding

δ(rQ) =
3

4
(1 − √

rQ) for 0 ≤ rQ ≤ 1. (99)

From the simple quadratic function in Eq. (98), we can also

derive a simple closed-form approximation for a given arbi-

trary entanglement ratio of 0 ≤ θ ≤ 1, as shown below:

rQ(δ) =
1

1 + θ

(
32

9
δ2 −

16

3
δ + 1 + θ

)
, (100)

for 0 ≤ δ ≤ 3
4

(
1 −

√
1−θ
2

)
and 0 ≤ θ ≤ 1. The expression

given in Eq. (100) may be inverted to arrive at the following

equation:

δ(rQ) =
3(

√
2 −

√
rQ(1 + θ ) + (1 − θ )

4
√
2

, (101)

for 0 ≤ rQ ≤ 1 and 0 ≤ θ ≤ 1. The simple closed-

form approximation given in Eq. (100) and (101) satisfies all

entanglement-assisted quantum coding bounds for arbitrary

FIGURE 16. The asymptotic quantum coding bounds on EA-QSCs for
different entanglement ratios. (a) θ = 0.25. (b) θ = 0.5. (c) θ = 0.75.

entanglement ratios, as confirmed by Fig. 16. We should

point out at this stage that as we substitute the value of

θ = 0 into Eq. (100) and (101), we comeback with the

closed-form approximation presented in the Eq. (77) and (78)
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for unassisted asymptotic quantum coding bounds. Hence,

we completed our closed-form approximations conceived for

all of different constructions of quantum stabilizer codes.

IX. CONCLUSIONS

We have conducted a survey of quantum coding bounds,

which describe the trade-off between the quantum coding

rate and the error correction capability for a wide range of

QSC constructions. Furthermore, we provided insights on

their relationships with their classical counterparts. For the

family of unassisted QSCs, we have provided both lower and

upper bounds for both CSS and non-CSS code constructions.

For the EA-QSCs, we have presented the quantum coding

bounds for maximally-entangled constructions and also for

arbitrary entanglement ratios.

We also have proposed a closed-form approximation as a

beneficial tool for analyzing the performance of QSCs. The

resultant closed-form approximation may be indeed used as

a simple benchmark for developing QSCs, because the resul-

tant minimum distance δ and quantum coding rate rQ values

from our approximations are unambiguous. For instance, for

a half-rate quantum stabilizer code having a given codeword

length of n = 128, the minimum distance is bounded by

11 < d < 22. By using our approximation, we arrive at

d(n = 128, rQ = 1/2) = 16 from our finite-length approx-

imation. Likewise, for a half-rate quantum stabilizer code

having the codeword length of 1024, the minimum distance is

bounded by 78 < d < 157. By using our proposal, we have

an approximate minimum distance of d(n = 1024, rQ =
1/2) = 103 from our asymptotic bound approximation. Ulti-

mately, the proposed method can be utilized as an efficient

tool for the characterization of quantum stabilizer codes.
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ABSTRACT We conceive and investigate the family of classical topological error correction codes (TECCs),

which have the bits of a codeword arranged in a lattice structure. We then present the classical-to-

quantum isomorphism to pave the way for constructing their quantum dual pairs, namely, the quantum

TECCs (QTECCs). Finally, we characterize the performance of QTECCs in the face of the quantum

depolarizing channel in terms of both the quantum-bit error rate (QBER) and fidelity. Specifically, from

our simulation results, the threshold probability of the QBER curves for the color codes, rotated-surface

codes, surface codes, and toric codes are given by 1.8 × 10−2, 1.3 × 10−2, 6.3 × 10−2, and 6.8 × 10−2,

respectively. Furthermore, we also demonstrate that we can achieve the benefit of fidelity improvement at the

minimum fidelity of 0.94, 0.97, and 0.99 by employing the 1/7-rate color code, the 1/9-rate rotated-surface

code, and 1/13-rate surface code, respectively.

INDEX TERMS Quantum error correction codes, quantum stabilizer codes, quantum topological codes,

lattice code, LDPC.

NOMENCLATURE

A. LIST OF ACRONYMS

BCH Bose-Chaudhuri-Hocquenghem

CNOT Controlled-NOT

CSS Calderbank-Shor-Steane

GV Gilbert-Varshamov

LDPC Low Density Parity Check

ML Maximum Likelihood

PCM Parity Check Matrix

QBCH Quantum Bose-Chaudhuri-Hocquenghem

QBER QuBit Error Rate

QECC Quantum Error Correction Code

QSC Quantum Stabilizer Code

QTECC Quantum Topological Error Correction Code

TECC Topological Error Correction Code

B. LIST OF SYMBOLS

d Minimum Distance

F Fidelity

Fth Threshold Fidelity

H (x) Binary Entropy of x

H Parity Check Matrix, Hadamard

Transformation

k Information Bit Length, Number of Logical

Qubits

n Codeword Length, Number of Physical Qubits

p Depolarizing Probability

pth Threshold Probability

r Classical Coding Rate

rQ Quantum Coding Rate

Si Stabilizer Operator

S Stabilizer Group

t Error Correction Capability

δ Normalized Minimum Distance

⊗ Kronecker Tensor Product

|ψ〉 Quantum State ψ

C(n, k, d) Classical Error Correction Codes Having

Parameter n, k and d

C[n, k, d] Quantum Stabilizer Codes Having

Parameter n, k and d
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I. INTRODUCTION

One of the essential prerequisites to build quantum com-

puters is the employment of quantum error correction

codes (QECCs) to ensure that the computers operate reliably

by mitigating the deleterious effects of quantum deco-

herence [1]–[3]. However, the law of quantum mechan-

ics prevent us from transplanting classical error correction

codes directly into the quantum domain. In order to cir-

cumvent the constraints imposed by the nature of quan-

tum physics, the notion of quantum stabilizer codes (QSCs)

emerged [4]–[6]. The invention of QECCs and specifically

the QSC formalism did not immediately eradicate all of

the obstacles of developing reliable quantum computers.

Employing the QSCs requires redundancy in the form of

auxiliary quantum bits (qubits) to encode the logical qubits

onto physical qubits. The redundant qubits are then utilized

to invoke the error correction. Hence, additional components

such as the quantum encoder and decoder circuits built from

quantum gates are required. Therefore, the employment of

a QSC itself has to be fault-tolerant to guarantee that the

QSC circuit does not introduce additional decoherence into

the quantum computers.

The notion of QSC trigerred numerous discoveries in the

domain of QECCs, which are inspired by classical error

corrrection codes. Essentially, QSCs represent the quantum

version of the classical syndrome decoding-based error cor-

rection codes. Since the concept of utilizing the syndrome

values for error correction is widely exploited in the clas-

sical domain, diverse classical error correction codes can

be conveniently ‘‘quantumized’’. Consequently, we can find

in the literature the quantum version of error correction

codes based on algebraic formalisms such as those of the

Bose-Chaudhuri-Hocquenghem (BCH) codes [7] and of

Reed-Solomon (RS) codes [8], quantum codes based on a

coventional trellis structure such as convolutional codes [9]

and turbo codes [10], [11], as well as quantum codes based

on bipartite graphs, such as low density parity check (LDPC)

codes [12]–[16]. Another approach that can be exploited to

develop both classical and quantum error correction codes

hinges on code constructions based on lattice or topological

structures. Unfortunately, this concept has not been widely

explored in the classical domain. By contrast, in the quantum

domain, having a code construction relying on the physi-

cal configuration of qubits is highly desirable for the low-

complexity high-reliability quantum computers.

The development of QECCs was inspired by Shor [17],

who proposed a 9-qubit code. The 9-qubit code, which

is also referred to as Shor’s code, can protect 9 physical

qubits from any type of quantum errors, namely bit-flips (X),

phase-flips (Z), as well as from simultaneous bit and phase-

flips (Y). Not long after the discovery of the first QECCs,

Steane invented the 7-qubit code, which was followed by

Laflamme’s perfect 5-qubit code [18], [19]. However, the

construction of these codes does not naturally exhibit inher-

ent fault-tolerance. The quantum circuit based implementa-

tion of these codes always involves a high number of qubit

interactions within the codeword of physical qubits. As a

consequence, an error caused by a faulty gate within either

the encoder, or within the stabilizer measurement, and/or in

the inverse encoder potentially propagates to other qubits

and instead of being eliminated, the deleterious effects of

quantum decoherence are actually further aggravated.

FIGURE 1. The qubit arrangement of IBM’s superconducting quantum
computers. The circles represent the qubits, while the arrows represent
the possible qubit interactions within the computers [20]. (a) 5 qubits
(ibmqx2). (b) 5 qubits (ibmqx4). (c) 16 qubits (ibmqx5).

The quantum version of the classical topological error cor-

rection codes (TECCs) [21], namely the quantum topological

error correction codes (QTECCs), constitute beneficial fault-

tolerant QSCs for improving quantum computer implemen-

tations. Firstly, they are capable of supporting the physical

implementation of quantum memory. For instance, this strat-

egy has been deployed for developing the IBM’s supercon-

ducting quantum computers, as shown in Fig. 1. From this

figure, we can see the qubit arrangement of the three pro-

totypes of IBM’s quantum computer - which can be viewed

online - namely the ibmqx2, ibmqx4, and ibmqx5 configu-

rations [20]. The first two of the quantum computers are the

5-qubit quantum computers, while the last one is a 16-qubit

quantum computer. The circles in Fig. 1 represent the qubits,

while the arrows represent all the possible two-qubit inter-

actions. It can be clearly seen that the existing architec-

tures impose a limitation, namely the two-qubit interactions

can be only performed between the neighbouring qubits.

Even though this particular limitation potentially imposes

additional challenges, when it comes to QSCs deployment,

the stabilizer effect can still be achieved by the corre-

sponding qubit arrangement by invoking the QTECCs. Sec-

ondly, the locality of stabilizer measurements minimizes the

requirements imposed on the corresponding quantum gates.

The interdependence of the qubits within the codeword are

inevitable. However, the interaction between the most distant

qubits should be avoided, which imposes challenges on the

realization. Another property that makes the QTECCs fault-

tolerant is their growing minimum distance as a function

of codeword length. More explicitly, the growing minimum
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FIGURE 2. Timeline of important milestones in the area of QTECCs. The code construction is highlighted with bold while the associated code type is
marked in italics.

distance ensures having an increasing error correction capa-

bility per codeword for the QTECCs upon increasing the

codeword length, albeit this does not necessarily increase the

per-bit normalized error correction capability. To elaborate a

little further, increasing the number of physical qubits1 also

increases the number of qubit interactions within the block.

Thus, the per-codeword error correction capability of the code

should grow fast enough to compensate for the potential error

propagation, which may further aggravate the effect of quan-

tum decoherence. The latter phenomenon is also related to

the problem experienced in the classical coding theory field,

associated with the trade-off between the coding rate and the

error correction capability of the error correction code. The

study of this particular trade-off in QSCs is a pivotal subject,

because we can simply decrease the coding rate further and

further to achieve a certain error correction capability without

considering the sheer amount of redundant resources wasted,

when aiming for achieving the target performance. There-

fore, a comprehensive investigation related to this particular

trade-off has to be conducted for characterizing the perfor-

mances versus code parameters. A timeline portraying the

1The terms ‘number of physical qubits’ is usually used to refer the
‘codeword length’ in quantum codes.

important milestones of the QTECCs’ development is

depicted in Fig. 2.2

Based on the aforementioned background, our novel con-

tributions are:

1) We conceive the construction of classical error correc-

tion codes based on topological or lattice structures.

Additionally, we demonstrate for a long codeword that

the resultant codes have a resemblance to the classical

LDPC codes exhibiting reasonable code parameters.

2) We present a tutorial on both classical and quan-

tum topological error correction codes as well as the

classical-to-quantum isomorphism along with the com-

parative study of code parameters.

3) We derive the upper bound QBER performance of the

QTECCs in the face of quantum depolarizing channel

and the formula to determine the threshold fidelity.

The structure of the paper is described in Fig. 3 and the rest

of this treatise is organized as follows. In Section II, we com-

mence with design examples of classical TECCs to pave the

2Shor’s, Steane’s and Laflamme’s codes do not belong to the QTECCs
family. However, we believe that it is still important to include the three
pioneeering contributions on QECCs in the timeline for the sake of
completeness.
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FIGURE 3. The structure of the paper.

way for delving into the quantum domain. In Section III, we

provide a tutorial on the fundamentals of QSCs by exploiting

its isomorphism with the classical syndrome-based decoding,

while in Section IV we detail our QSC design examples for

QTECCs. We continue by characterizing the performance

of QTECCs over the popular quantum depolarizing channel

in terms of QBER and fidelity in Section V. Finally, we

conclude our discussion in Section VI.

II. CLASSICAL ERROR CORRECTION CODES FROM

TOPOLOGICAL ORDER: DESIGN EXAMPLES

As we mentioned earlier in Section I, the classical error

correction codes can be developed relying on diverse

approaches [34]. We can find in the literature various family

of codes based on algebraic formalisms (such as BCH codes

and RS codes), codes based on conventional trellis structures

(such as convolutional codes and turbo codes) and also codes

based on bipartite graphs (such as LDPC codes). Another

approach that can be adopted to formulate a classical error

correction code is by exploiting the topological or lattice

structure. By assuming that we can arrange the bits of a code-

word on a lattice structure, it can inherently provide uswith an

error correction scheme [21]. For instance, let us assume that

a codeword of classical bits is arranged on the square lattice

given in Fig. 4. The black circles laying on the edges of the

lattice define the encoded information bits or the codeword.

The red squares laying on the vertices of the lattice define the

parity check matrix (PCM) of the codes, which also directly

defines the syndrome values of the received codeword. The

number of black circles is associated with the codeword

length of n bits and the number of red squares is associated

with the length of the syndrome vector or the number of rows

of the PCM, which is equal to (n− k) bits. For the particular

square lattice seen in Fig. 4, the codeword length n is equal to

13 bits and the length (n− k) of the syndrome vector is equal

to 6 bits. Hence, the number of information bits k is equal to 7

bits. Therefore, this code has 27 = 128 legitimate codewords

out of the 213 = 8192 possible received words. Based on the

above-mentioned construction, for example in classical BCH

codes, we would be able to distinguish 2(13−7) = 26 = 64

FIGURE 4. Example of a classical bit arrangement on a square lattice
structure. The black circles laying on the edges of the lattice denote the
bits of the codeword, while the vertices of the lattice denoted by red
squares define the parity check matrix and also the syndrome values.

distinct error patterns (including the error free scenario) and

correct a single bit error based on sphere packing bound.

The coding rate r is defined by the ratio between the num-

ber of information bits k to the codeword length n, yielding:

r =
k

n
(1)

Hence, the coding rate of the square lattice code of Fig. 4

is r = 7/13.

Now, let us delve deeper into how the error correction

works. Let us revisit the square lattice of Fig. 4. The k infor-

mation bits are encoded to n-bit codewords, where n > k .

Noise or decoherence imposed by the channel corrupts the

legitimate codeword. The syndrome computation is invoked

to generate the (n−k)-bit syndrome vector, which tells us both

the predicted number and the position of the errors. In Fig. 4,

the i-th red square indicates a syndrome bit of si. Hence, the

syndrome vector s is a 6-bit vector, which is given by

s = [s1 s2 s3 s4 s5 s6]. (2)

In the case of an error-free received codeword, the resultant

syndrome vector is s = [0 0 0 0 0 0]. By contrast, if an

error is imposed on the codeword, it triggers a syndrome

bit value of 1 at the adjacent syndrome bit positions. For

example, if an error occurs at the bit index 4 of Fig. 4, it

triggers the syndrome values of s1 = 1 and s3 = 1. The

rest of the syndrome values remain equal to 0. Therefore, an

error corrupting the bit index 4 generates a syndrome vector

of s = [1 0 1 0 0 0]. Hence, the decoder flips the value of bit

index 4. Similarly, if an error occurs at bit number 3, it only

triggers the syndrome value of s2 = 1. Hence, it generates the

syndrome vector of s = [0 1 0 0 0 0] and the error recovery

procedure proceeds accordingly.

Now let us consider the ocurrence of two bit errors in the

codeword. For instance, let us assume that errors occur at
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bit indices of 6 and 7 of Fig. 4. Note that both these errors

affect s3, therefore they cancel each other effect on s3 out,

hence generating a syndrome bit value of s3 = 0. However,

we still do not receive an all-zero syndrome vector, because

the bit index 7 results in a syndrome bit value of s4 = 1 of

Fig. 4. Therefore, the resultant syndrome vector due to a bit

error in both bit 6 and 7 is s = [0 0 0 1 0 0]. Since the

syndrome vector of s = [0 0 0 1 0 0] is also associatedwith the

error incident upon bit index 8, the error recovery procedure

decides to flip bit 8 instead, because a single error occurance

is more likely to happen than a double-error when the error

probability less than 1/2. This example is an illustration that

the occurence of two bit errors in the codeword is beyond

the error correction capability of the code given in Fig. 4. We

conclude that the code based on the square lattice illustrated

in Fig. 4 is capable of correcting only a single bit error.

The error correction capability of t bits for a given code

construction is defined by theminimumdistance d of the code

as formulated by

t =
⌊
d − 1

2

⌋
. (3)

Hence, a code that is only capable of correcting a single error

has a minimum distance of d = 3, as exemplified by the

square lattice code given in Fig. 4. Moreover, the minimum

distance of a square lattice code is defined by the dimen-

sion of the lattice. Therefore, to increase the error correction

capability of the code, we can simply increase the dimension

of the lattice, which directly translates into the increase of

the minimum distance. The square lattice considered in our

example can be generalized to a rectangular lattice structure

having a dimension of (l × h), where l is the length of the

lattice and h is the height of the lattice. In the case of a

rectangular structure, the minimum distance is defined by

d = min(l, h). (4)

The codeword length is also uniquely defined by the dimen-

sion of the lattice. More explicitly, for a rectangular lattice of

dimension (l×h), the codeword length is equal to the number

of the lattice edges, which is given by

n-edges = nsquare = 2lh− l − h+ 1. (5)

The number of rows in the PCM of a square lattice code is

defined by the number of faces or plaquettes of the rectangu-

lar lattice, which is formulated as follows:

n-vertices = nsquare − ksquare = h(l − 1). (6)

Hence, from Eq. (5) and (6), the number of information bits

k encoded by the rectangular lattice codes is

ksquare = nsquare − (nsquare − ksquare)

= lh− l + 1. (7)

Themost efficient code can be constructed by a square lattice,

where d = l = h. Therefore, the expression given in Eq. (5)

and (7) can be simplified to

nsquare = 2d2 − 2d + 1 (8)

ksquare = d2 − d + 1. (9)

Hence, the coding rate of square lattice based codes can be

formulated as follows:

rsquare =
ksquare

nsquare
=

d2 − d + 1

2d2 − 2d + 1
. (10)

TABLE 1. Constructing the PCM of the square lattice code of Fig. 4 with
minimum distance of d = 3. Each row is associated with the syndrome
operators denoted by red squares in Fig. 4.

The PCM can be readily constructed in a similar fashion.

Each red square of Fig. 4 represents the row of the PCM,

where the adjacent black circles denote the index of the

column containing a value of 1. For example, the first red

square is adjacent to the black circles numbered 1, 2, and 4.

Therefore, in the first row of the PCM, there are only three

elements containing a value of 1 and those are marked by

the index 1, 2, and 4. The remaining rows of the PCM are

generated using the same principle. Explicitly, each row of

the PCM of the square lattice code of Fig. 4 is portrayed in

Table 1. Finally, the PCMH of the square lattice code of Fig. 4

is given by

H =




h1
h2
h3
h4
h5
h6



. (11)

The code construction based on the general lattice structure

is not limited to a rectangular lattice. Let us consider, for

example the triangular lattice of Fig. 5. The black circles

laying on the vertex of the lattice define the codeword and

the red squares on the faces of the lattice define the syndrome

vector. The error correction principle of the triangular lattice

code is similar to that of its square counterpart. Hence, the

PCM of the triangular lattice code is readily derived using

the following equation:

H =



h1
h2
h3


, (12)

where h1, h2, and h3 correspond to the syndrome bits given in

Table 2. It is important to point out that the resultant triangular

lattice code is one of the possible construction for the classical

C(7, 4, 3) Hamming code. Specifically, both codes have a

codeword length of n = 7 and number of information bits

of k = 4. Hence, the length of syndrome vector is 3 bits.
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FIGURE 5. Example of a classical bit arrangement constructed over a
triangular lattice structure. The black circles laying on the vertices of the
lattice represent the codeword bits, while the faces or the plaquettes of
the lattice denoted by red squares define the parity-check matrix and the
syndrome bits of the error correction code. This configuration is an
alternative representation for the C(7,4,3) classical Hamming code.

TABLE 2. Constructing the PCM of the triangular lattice code with
minimum distance of d = 3. Each row is associated with the
syndrome operators denoted by blue circles in Fig. 5.

Consequently, the codes have 24 legitimate codewords out of

the possile 27 received words. Based on the sphere packing

bound, the codes are capable of distinguishing 23 = 8 distinct

error patterns including the error-free scenario. Therefore,

both constructions are capable of correcting exactly a single

error with an identical coding rate of r = 4/7.

Similar to its rectangular counterpart, increasing the error

correction capability of a triangular lattice code is achieved

by expanding the underlying lattice configuration. However,

increasing the number of vertices of the triangular lattice

structure is not as straightforward as that of its rectangular

counterpart because it can be carried out in several differennt

ways. In this example, we use the construction proposed

in [25] and Fig. 6 illustrates how to increase the number of

encoded bits of the triangular lattice code of Fig. 5 by using

hexagonal tiles.

Following the pattern of Fig. 6, the codeword length, which

is also given by the number of vertices of the given lattices,

is explicitly formulated as follows:

n-vertices = ntriangular =
1

4
(3d2 + 1), (13)

where d is the minimum distance of the code. The number

of faces in the triangular lattice, which corresponds to the

FIGURE 6. Extending the length of the triangular lattice code, which
directly increases the numbers of error corrected.

number of rows of the PCM and also to the syndrome vector

length, can be encapsulated as

n-faces = ntriangular − ktriangular =
1

8
(3d2 − 3). (14)

Hence, the number of information bits can be expressed as

ktriangular = ntriangular − (n− k)triangular

=
1

8
(3d2 + 5). (15)

Finally, the coding rate of the triangular lattice codes of Fig. 6

is formulated as follows:

rtriangular =
ktriangular

ntriangular
=

3d2 + 5

2(3d2 + 1)
. (16)

Then, the normalized minimum distance, which directly cor-

responds to the error correction capability per-bit of a code

may be defined as:

δ =
d

n
(17)

For square lattice and triangular lattice codes, the normalized

minimum distances are given by

δsquare =
d

2d2 − 2d + 1

δtriangular =
4d

3d2 + 1
. (18)

In the rest of this treatise, we will consider the family of

error correction codes based on lattice structures as a promi-

nent representative of classical topological error correction

codes (TECC). The lattice structures given in Fig. 4 and 5 can

be transformed to Tanner graphs [35]. The dual representation

of TECCs in the rectangular lattice domain and in the Tanner

graph domain is given in Fig. 7 as exemplified by the square

lattice code. We can observe that TECCs based on square

lattices have a maximum row weight of ρmax = 4 and a

maximum column weight of γmax = 2. By contrast, the codes

based on triangular lattices have ρmax = 6 and γmax = 3. For

a very long codeword, these properties lead to sparse PCMs.

Hence, classical TECCs can be viewed as a specific family

of LDPC codes. The asymptotical limit of the coding rate for

LDPC codes based on TECCs can be directly derived from

Eq. (10) and (16). As the codeword length tends to infinity
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FIGURE 7. Example of how to represent the square lattice code. (a) The
representation in lattice structure. (b) The representation in Tanner or
bipartite graph.

(n → ∞), the minimum distance d is also expected to tend

to infinity. Hence, at the asymptotical limit we have

r∞
square = lim

d→∞

d2 − d + 1

2d2 − 2d + 1
=

1

2
, (19)

r∞
triangular = lim

d→∞

3d2 + 5

2(3d2 + 1)
=

1

2
. (20)

TABLE 3. Code parameters of classical Hamming code having a single
error correction capability, which is used in Fig. 8 and 9. The coding rate r
and normalized minimum distance δ are calculated using Eq. (1) and (17),
respectively.

Let us observe Fig. 8, where we plot the minimum dis-

tance (d) versus coding rate (r) of TECCs based on Eq. (10)

and (16). We also include the classical codes based on the

sphere packing concept, namely the Hamming codes and the

BCH codes, whose parameters are portrayed in Table 3 and 4,

respectively. We also include some labels for several codes

in the figure, in order to show how to convert the code

parameters into data points in the figure. More explicitly, let

us consider the specific triangular codes T1 and T2, where

T1 represents the triangular code having a minimum distance

of 3, which we have already used in the example in Fig. 5.

As it has been elaborated on earlier, the resultant code T1 is

C(7, 4, 3). Hence, the coding rate is r = 4/7 ≈ 0.57. Again,

the triangular code T1 has identical code parameters to the

Hamming code C(7, 4, 3), which is labeled H1. Hence, the

same point in Fig. 8 represents both T1 and H1. Next, the

code parameters of the triangular code T2 having a minimum

distance of d = 5 are obtained using Eq. (13) and (15)

for determining the codeword length n and the information

length k , respectively. Explicitly, by substituting d = 5 into

Eq. (13) and (15), we have n = 19 and k = 10. Finally, we

arrive at the coding rate of r = k/n = 10/19 ≈ 0.53 for the

triangular code T2. The rest of the code parameters for square

TABLE 4. Code parameters of classical BCH codes having codeword
length of n = 255, which is used in Fig. 8 and 9. The coding rate r and
normalized minimum distance δ are calculated using Eq. (1) and (17),
respectively.

codes, triangular codes, Hamming codes and BCH codes are

protrayed in the same way in Fig. 8.

In general, increasing the minimum distance of the codes

while mantaining the codeword length can be achieved at

the expense of reducing the coding rate. This penomenon is

perfectly reflected by the behaviour of classical BCH codes

in Fig. 8. Explicitly, in Fig. 8 we portray BCH codes having

a constant codeword length of n = 255, which are described

in Table 4. As seen, upon increasing the minimum distance

of BCH codes, the coding rate is gradually reduced. Next,

increasing the coding rate while maintaining the minimum

distance of the code can indeed be achieved by increasing

the codeword length. In this case, the Hamming codes, whose

code parameters are described in Table 3, reflect perfectly this

phenomenon. Observe in Fig. 8, that for the Hamming codes

exhibiting a constant minimum distance of d = 3, we can

see the gradual increase of coding rate upon increasing the

codeword length. However, the behaviour of the BCH and

Hamming codes is not reflected by the TECCs. Let us elabo-

rate on the TECCs behaviour in Fig. 8. The increase of mini-

mumdistance of TECCs upon increasing the codeword length

looks very impressive, since they do not seem to require

much sacrifice in terms of coding rate reduction. In fact,

the coding rate is saturated at approximately r = 1/2 for

long codewords. This is indeed a rather different behaviour

compared to that of the classical BCH codes. However, it is

of pivotal importance to mention again that the increasing

error correction capability per codeword does not necessarily

imply the improvement of error correction capability per

bit. Therefore, we have to normalize the performance to the

codeword length in order to portray a fair comparison.

Let us now observe Fig. 9, where we plot the normal-

ized minimum distance (δ) versus the coding rate (r) of

TECCs based on Eq. (18). We include both the BCH codes

as well as the Hamming codes for the sake of compari-

son. We also plot the classical Hamming bound [36] and

Gilbert-Varshamov (GV) [37] bound in this figure to portray
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FIGURE 8. The coding rate versus minimum distance of TECCs. For asymptotical limit, the TECCs may be
categorized into LPDC codes and the coding rates converge to r = 1

2
. We also include the BCH codes and

Hamming codes for the sake of comparison. The coding rate for the square lattice based codes and the
triangular lattice based codes are defined in Eq. (10) and (16), respectively. The code parameters for classical
Hamming and BCH codes are described in Table 3 and 4, respectively. We put labels only for several codes as
examples on how to convert the given code parameters into the figure.

the upper bound and lower bound of the normalizedminimum

distance, which correspond directly to the normalized error

correction capability, given the coding rate. The classical

Hamming bound is formulated as follows [36]:

k

n
≤ 1 − H

(
d

2n

)
, (21)

where H (x) is the binary entropy of x defined by H (x) =
−x log2 x− (1−x) log2(1−x), while the classical GV bound

is expressed as [37]

k

n
≥ 1 − H

(
d

n

)
. (22)

The classical Hamming bound and GV bound defined

in Eq. (21) and (22) are valid for asymptotical limit

where n → ∞.

The classical Hamming codes constitute the so-called per-

fect codes for a finite-length, since they always achieve

the Hamming bound for finite-length codes.3 Therefore, the

Hamming codes also mark the upper bound of normalized

minimum distance, given the coding rate of finite-length

3The Hamming bound for finite length codes has a different formulation
from that of asymptotical limit. Therefore, we refer to [38] for further
explanations.

codewords. Secondly, the classical BCH codes having a code-

word length of n = 255 lay perfectly - as expected - between

the Hamming and GV bound in the asymptotical limit, as

shown in Fig. 9. However, we observe an unusual behaviour

for the family of TECCs, since the normalized minimum

distance drops to zero upon increasing the codeword length,

while the coding rate saturates at r = 1/2. We hypothesize

that since these codes were not designed using the sphere

packing concept - which the Hamming and BCH codes are

based on - the Hamming distance radius of the associated

decoding sphere in the TECCs codespace is most likely to

be non-identical for the different codewords. In addition,

the minimum distance of TECCs is only on the order of

O(
√
n), which implies that the codeword length of TECCs is

proportional to the factor of O(d2). By contrast, for clasical

BCH and Hamming codes the growth of the minimum dis-

tance is approximately linear, i.e. of order O(n). It is clearly

seen that even though the growth of minimum distance per

codeword of the TECCs appears to be impressive in Fig. 8,

it is not fast enough to compensate for the undesired effect

of the increasing codeword length. Hence, the TECC error

correction capability per bit tends to zero in the asymptotical

limit. Nevertheless, we leave the definitive answer for this

peculiar phenomenon open for future research, since our
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FIGURE 9. The coding rate versus normalized minimum distance of TECCs. For asymptotical limit, the TECCs may
be categorized into LPDC codes and the coding rates converge to r = 1

2
, while the normalized minimum

distances (δ) vanish to zero. In addition, we also include the classical Hamming and BCH codes, which
constructed based on sphere packing bound, for the sake of comparison. The code parameters for classical
Hamming and BCH codes are portrayed in Table 3 and 4, respectively. We put labels only for several codes as
examples on how to convert the given code parameters into the figure.

focus in this treatise is on finding the classical-to-quantum

isomorphism of TECCs.

Since the TECC associated with the asymptotical limit

of n → ∞ belongs to the family of LDPC codes, an

efficient LDPC decoder such as the belief propagation (BP)

technique [39] can be invoked for these code constructions.

However, the normalized minimum distance of the LDPC

codes based on topological order tends to zero, as the code-

word length increases. Nevertheless, TECC-based LDPC

codes exhibit several desirable code properties, such as an

attractive coding rate (r ≈ 1/2), structured construction

and unbounded minimum distance. However, another aspect

worth considering for TECC-based LDPC codes is the fact

that we can find numerous cycles of length 4 in triangular

constructions and cycles of length 6 in square constructions,

which potentially degrades the performances of the codes.

A brief summary of code parameters of TECC-based LDPC

codes is given in Table 5.

III. THE ROAD FROM CLASSICAL TO QUANTUM ERROR

CORRECTION CODES

In this section, we provide a brief review of quantum infor-

mation processing. This will be followed by a rudimentary

TABLE 5. The code parameters of TECC-based LDPC codes.

introduction of classical syndrome-based decoding and how

we can demonstrate the isomorphism towards quantum stabi-

lizer codes.

A. A BRIEF REVIEW OF QUANTUM INFORMATION

PROCESSING

In the classical domain the information is represented by a

series of binary digits (bits), whilst in the quantum domain the

information is conveyed by quantum bits (qubits). A classical

bit can only hold a value of either ‘0’ or ‘1’ at a time, while

the qubit can hold the value of ‘0’, ‘1’ and the superposition

of both values. More specifically, the state of a single qubit
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can be expressed mathematically as follows:

|ψ〉 = α0|0〉 + α1|1〉, α0, α1 ∈ C, (23)

where P0 = |α0|2 and P1 = |α1|2 are the probabil-

ity of obtaining the value of 0 and 1 upon measurement,

respectively. Hence, the unitary constraint of having |α0|2 +
|α1|2 = 1 is applied. Representing the pure states of ‘0’ by

the notation |0〉 and the pure state of ‘1’ by the so-called

ket notation |1〉,4 as shown in Eq. (23), is referred to as the

Dirac notation [40]. The pure state of |0〉 and |1〉 can also be

represented as a 2-element vector in the Hilbert space H as

follows:

|0〉 =
(
1

0

)
, |1〉 =

(
0

1

)
. (24)

Hence, substituting the vectors given in Eq. (24) into Eq. (23)

yields:

|ψ〉 =
(
α0
α1

)
, α0, α1 ∈ C. (25)

The state of a single qubit can be manipulated by using the

quantum unitary transformations. A unitary transformation

ofU may be realized by a quantum gate, which is the elemen-

tary building block of quantum computers. All of the quantum

domain unitary transformations are represented by unitary

matrices to ensure that the final probability of quantum states

remains 1, which can be explicitly formulated as

U†U = I, (26)

where I is an identity matrix. The Pauli gates or Pauli oper-

ators constitute a collection of unitary transformations repre-

senting the discrete set of errors that may be imposed on a

single qubit. The Pauli operators are defined using the Pauli

matrices, as follows:

I =
(
1 0

0 1

)
, X =

(
0 1

1 0

)
,

Y =
(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
. (27)

The Pauli matrices can be physically interpreted as a bit-

flip error, phase-flip error as well as both bit-flip and phase-

flip error for the Pauli matrix X, Z and Y, respectively. The

Pauli-I matrix is an identity matrix corresponding to the

absence of errors.

The error imposed onmulti-qubit systems can be described

using the Kronecker tensor product. Explicitly, for the matri-

ces P and Q having (a× b) elements and (x × y) elements,

respectively, the resultant Kronecker product is a matrix hav-

ing (ax × by) elements formulated by

P ⊗ Q =




p11Q · · · p1(b−1)Q p1bQ

p21Q · · · p2(b−1)Q p2bQ
...

. . .
...

...

p(a−1)1Q · · · p(a−1)(b−1)Q p(a−1)bQ

pa1Q · · · pa(b−1)Q pabQ



.

(28)

4The terminology ket comes from the bra-ket notation. The bra notation
refers to the 〈ψ | notation, while ket notation is used for |ψ〉 notation.

For instance, a two-qubit system is represented by the Kro-

necker product between a pair of two-element vectors given

in Eq. (24). More explicitly, let us consider the qubit having

the state of |ψ1〉 = α0|0〉 + α1|1〉 and another one in the

state of |ψ2〉 = β0|0〉 + β1|1〉. The superimposed state can

be described as follows:

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 =
(
α0
α1

)
⊗

(
β0
β1

)
=




α0β0
α0β1
α1β0
α1β1




≡ α0β0|00〉 + α0β1|01〉 + α1β0|10〉 + α1β1|11〉, (29)

where α0, α1, β0, β1 ∈ C. It can be observed that a two-qubit

state is a superposition of all four possible states that can be

generated by two bits i.e. 00, 01, 10 and 11. Moreover, the

unitary condition of |α0β0|2+|α0β1|2+|α1β0|2+|α1β1|2 = 1

still holds. The Kronecker product of a pair of two-element

vectors yields a vector consisting of 22 elements. Hence, the

N -qubit systems yield all of the 2N possible states that can be

generated by an N -bit sequence. If i is the decimal represen-

tation of an N -bit sequence, the N -qubit superposition state

can be expressed by the Dirac notation as follows:

|ψ〉 =
2N−1∑

i=0

αi|i〉 where αi ∈ C and

2N−1∑

i=0

|αi|2 = 1. (30)

Since the N -qubit state is represented by a 2N -element col-

umn vector, the unitary transformation of the N -qubit system

is defined by a (2N×2N ) elements unitary matrix. In quantum

communication, the quantum decoherence may impose a bit-

flip error, phase-flip error, as well as both bit-flip and phase-

flip error. For the sake of modeling the behaviour of quantum

information in the presence of quantum impairments, the

Pauli channel model is widely used [41]. To elaborate a little

further, the Pauli channel inflicts an error P ∈ Gn on the state

of an N -qubit system, where each qubit may independently

experience either a bit-flip error (X), a phase-flip error (Z),

or both bit-flip and phase-flip error (iXZ = Y). For an

N -qubit system, the general Pauli group Gn is represented by

an N -fold tensor product of G1, as described below:

Gn = {P1 ⊗ P2 · · · ⊗ Pn|Pj ∈ G1}, (31)

where the Pauli group G1 is constituted by the unitary trans-

formations applied to a single qubit state, which is closed

under multiplication and is explicitly defined as follows:

G1 = {eP : P ∈ {I,X,Y,Z}, e ∈ {±1,±i}}. (32)

The laws of quantum mechanics prevent us from directly

transplanting the classical error correction codes into the

quantum domain owing to the following obstacles:

1) No Cloning Theorem. In the classical domain, the

basic technique of protecting the information bits in

repetition coding is that of copying the same informa-

tion several times. By contrast, in the quantum domain,

this simple approach cannot be implemented, since no
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FIGURE 10. The basic model of classical error correction codes invoking syndrome-based decoding. The
operation G denotes the generator matrix, which maps the k information bits x to the n coded bits y. The
channel E inflicts an error vector e ∈ {0,1}n upon the codeword y, resulting in the corrupted received bits y.
The receiver calculates the syndrome vector s based on the PCM H and the received bits y to predict the
number and the position of errors contained in the received bits y. The error recovery R generates the error
recovery vector r, which is applied to the received bits y. This operation collapses the received bits y to one of
the legitimate codedword y, yielding the predicted codeword ŷ. Finally, we can readily determine the
predicted information bits x̂ from the predicted codeword ŷ.

unitary quantum transformation is capable of perform-

ing this specific task.

2) The quantum bit collapses into the correspond-

ing classical bit upon measurement. In the classical

domain, the error correction schemes are typically fed

by measuring the bits received at the output of the

demodulator. In the quantum domain, measuring the

qubits represented by the superposition of the classi-

cal states will collapse the superposition into a single

classical post-measurement state and consequently we

lose the original quantum information.

3) QECCs have to handle not only bit-flip errors, but

also phase-flip errors, as well as the simultaneous

bit-flip and phase-flip errors. By contrast, in the clas-

sical domain, we deal with a single type of error, which

is the bit-flip error. In quantum domain, the nature

of quantum decoherence is continuous and it can be

modeled as a linear combination of bit-flip errors (X),

phase-flip errors (Z), or both bit-flip and phase-flip

errors (iXZ = Y). However, thanks to the beneficial

effect of the stabilizer measurement, the continuous

nature of quantum decoherence can be treated as a dis-

crete set of independent errors imposed on the physical

qubits.

Albeit all of the aforementioned obstacles hindering the

development of QECC schemes, the invention of QSC for-

mulation succeeded in circumventing these problems.

B. A BRIEF REVIEW OF CLASSICAL SYNDROME-BASED

DECODING

As mentioned earlier, the problems revolving around the

QECCs are effectively circumvented by QSCs, which essen-

tially constitute the syndrome-based decoding version of

QECCs. Hence, for the sake of sheding some light onto the

parallelism between the classical and quantum regime, we

proceed with the classical syndrome-based decoding first.

In the classical domain a C(n, k) code maps k information

bits into n coded bits, where k < n. The purpose of attaching

(n − k) redundant bits is to facilitate error detection or even

error correction. Let us refer to Fig. 10 and consider the clas-

sical C(7, 4) Hamming code, which maps 4 information bits

into 7 coded bits and hence becomes capable of correcting

a single error. In general, the mapping of the k information

bits is performed by multiplying the information row vector x

consisting of k elements by the generator matrix G having

(k×n) elements. Explicitly, the mapping can be formulated as

y = x ∗ G, (33)

where the resultant codeword y is a row vector having n

elements, while the notation of ∗ represents the matrix mul-

tiplication over modulo-2. For instance, the generator matrix

of the C(7, 4) Hamming code is defined by

GHamming =




1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1


. (34)

From Eq. (33) and (34) we can generate the code space

mapping shown in Table 6, where xi denotes all the possible

combination of information bits and yi represents the associ-

ated legitimate codeword bits.

The generator matrix G can be arranged into a systematic

form as

G = (Ik |P) , (35)

where Ik is a (k × k) identity matrix and P is a matrix having

k × (n − k) elements. The form given in Eq. (35) generates
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a systematic codeword y consisting of the k-bit information

word x followed by (n− k) parity bits. A generator matrix G

is associated with an (n − k) × n-element PCM H, which is

defined as

H =
(
PT |In−k

)
. (36)

As an example, the generator matrix of the classical C(7, 4)

Hamming code of Eq. (34) is associated with the following

PCM:

HHamming =



1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1


. (37)

The PCM of H is constructed for ensuring that a valid code-

word y satisfies the following requirement:

y ∗ HT = 0. (38)

A received word y may be contaminated by an error vector

e ∈ {0, 1}n due to channel impairments, which is denoted

by E in Fig. 10. More explicitly, the resultant received words

corrupted by the additive noise E can be formulated as

y = y + e. (39)

The error syndrome s is a row vector having (n− k) elements

obtained by the following calculation:

s = y ∗ HT = (y + e) ∗ HT

= y ∗ HT + e ∗ HT

= 0 + e ∗ HT

= e ∗ HT . (40)

The syndrome vector s contains the information related to

the error pattern imposed by the channel. To elaborate, we

have 2k legitimate codewords generated by the all possible

combination of the k information bits, 2n possible received

bit patterns of ŷ and 2(n−k) possible syndromes s, each

unambiguously identifying one of the 2(n−k) error patterns,
including the error-free scenario. Hence, for the classical

C(7, 4) Hamming code, the syndrome vector si can detect

and correct a single error pattern as specified in Table 7. The

error recovery ri is determined based on the most likely error

pattern. After obtaining the syndrome vector, the recovery

vector ri is applied to the received words to obtain the pre-

dicted codeword ŷ = y + r, as depicted in Fig. 10. The

application of the recovery operator ri to the received word

always collapses it into one of the legitimate codewords y,

hence the predicted codeword ŷ can be finally demapped in

order to obtain the predicted information bits x̂ using Table 6,

as illustrated in Fig. 10. For linear systematic codes, this

process can be simply performed by chopping the last (n−k)

bits, namely the redundant bits.

For more a detailed example, let us consider k information

bits of x = (1 1 0 1). The information bits are encoded

using the classical C(7, 4) Hamming code employing the

generator matrix of Eq. (33), yielding the coded bits of

y = (1 1 0 1 1 0 0). Let us assume that the channel corrupts

TABLE 6. The code space mapping of the C(7,4) classical Hamming code.

TABLE 7. The look-up table to determine the most likely error pattern
ei ∈ E that corresponds to the syndrome value si , which is created based
on Eq. (37) and (40).

the legitimate codeword y by imposing an error pattern of

e = (1 0 0 0 0 0 0) yielding the received word of y =
(0 1 0 1 1 0 0). Next, the receivedword is fed to the syndrome

calculation block, which contains the PCM of Eq. (37). Based

on Eq. (40), the received word y = (0 1 0 1 1 0 0) generates

the syndrome vector of s = (1 1 0). Utilizing the look-up

table of Table 7, the error recovery vector becomes r =
(1 0 0 0 0 0 0). Upon applying the error recovery vector, the

received word y is collapsed to one of the legitimate code-

words y in Table 6, which is ŷ = (1 1 0 1 1 0 0). Assuming

that the predicted codeword ŷ is valid, the demapper decides

to translate the predicted codeword ŷ = (1 1 0 1 1 0 0) to

the predicted information bits as x̂ = (1 1 0 1). Hence, the

original information is successfully recovered. The whole

process of syndrome calculation, error recovery and demap-

ping jointly form the decoding process. It is important to note

that in practice, the syndrome calculation, recovery operator

and demapper are amalgamated into a single decoder block.

Let us now assume that the channel imposes an error

pattern beyond the error correction capability of the classical

13740 VOLUME 6, 2018



D. Chandra et al.: QTECCs: The Classical-to-Quantum Isomorphism Perspective

FIGURE 11. The basic model of QSCs implementation over the quantum depolarizing channel. The k logical qubits are mapped into n physical
qubits with the aid of (n − k) redundant/auxiliarry qubits (ancillas) to provide protection from the quantum decoherence. This schematic is
similar to the classical error correction model where (n − k) redundant bits are added to k information bits in order to provide error
correction. The quantum encoder V serves the same purpose as G of the classical error correction codes in Fig. 10. The quantum encoder V
transforms the state of k logical qubits |ψ〉 into the state of n physical qubits |ψ〉 with the aid of (n − k) ancillas. The quantum depolarizing
channel imposes the error vector represented by the n-tupple Pauli operator P ∈ Gn. The syndrome operators Si ∈ S generate the
eigenvalues of ±1, which are analogous to the value 0 and 1 of the classical syndrome vector, which is provided by the PCM H in Fig. 10. The
error recovery R applies the correction according to the syndrome values provided by the syndrome measurements. Finally, the
quantum-domain inverse encoder V† transforms the predicted state of physical qubits |ψ ′〉 back to the predicted state of logical qubits |ψ ′〉,
which carries out the same function as the demapper D in the classical syndrome-based decoding of Fig. 10.

C(7, 4) Hamming code. For example, assume that we send k

information bits of x = (1 1 0 1), similar to that of in the

previous example, while the channel inflicts an error pattern

of e = (1 1 0 0 0 0 0). As a result, we have the received

codeword bits of y = (0 0 0 1 1 0 0). Based on the received

codeword, we have the syndrome vector of s = (0 1 1).

Based on the syndrome vector, the error recovery of r =
(0 0 1 0 0 0 0) is chosen. Consequently, the error recovery

vector collapses the received word to the incorrect legitimate

codeword, which is ŷ = (0 0 1 1 1 0 0), instead of the cor-

rect codeword of y = (1 1 0 1 1 0 0). Since the demapper

assumes that the error recovery completes the task perfectly,

the demapper decides that the predicted information bits are

x = (0 0 1 1). Compared to the original information bits, the

predicted information bits are considered as an error. This

example demonstrates that the classical C(7, 4) Hamming

code is unable to operate flawlessly beyond its error correc-

tion capability.

C. A BRIEF REVIEW OF QUANTUM STABILIZER CODES

The formulation of QSCs is capable of detecting both the

number and the position of errors without actually observing

the state of physical qubits, which is vitally important since

otherwise the quantum state will collapse to classical bits

upon measurement. This was achieved by amalgamating the

classical syndrome-based decoding with the QECCs. Similar

to classical error correction codes, QSCs also rely on attach-

ing redundant qubits to the information qubits for invoking

error correction. The basic model of QSCs is depicted in

Fig. 11, which will be contrasted to its classical pair in

Fig. 10. In order to generate the codespace C, the redundancy

is constituted by (n − k) auxiliary qubits. Next, a unitary

transformation V transforms the k qubits in the state of |ψ〉
and the (n − k) auxiliary qubits into an n qubits in the state

of |ψ〉. The unitary transformation of V represents the action

of the quantum encoder. Explicitly, themapping of the logical

qubits constituting the state of |ψ〉 ∈ C
2k to the physical

qubits forming the state of |ψ〉 ∈ C
2n by the encoder V of

Fig. 11 can be mathematically formulated as follows:

C = {|ψ〉 = V(|ψ〉 ⊗ |0〉⊗(n−k))}. (41)

The QSCs rely on the stabilizer operators Si ∈ S for iden-

tifying the type, the number and also the position of the qubit

errors. A stabilizer operator Si is an n-tuple Pauli operator,

which preserves the state of physical qubits as defined below:

Si|ψ〉 = |ψ〉. (42)
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The quantum channel inflicts errors represented by n-tuple

Pauli operators P ∈ Gn, as given in Eq. (31), which trans-

forms the encoded physical qubits that were originally in the

state of |ψ〉 to the potentially corrupted physical qubits in the
state of |ψ̂〉, as seen in Fig. 11. More explicitly, this process

can be described as follows:

|ψ̂〉 = P|ψ〉. (43)

The stabilizer operators act similarly to the syndrome calcu-

lations routinely used in classical error correction codes. To

elaborate a little further, a stabilizer operator will return an

eigenvalue of +1, when an error operator P commutes with

the stabilizer operator, while we arrive at the eigenvalue of

−1, if it anti-commutes. The eigenvalues of +1 and −1 are

analogous to the classic syndrome bit of 0 and 1, respectively,

which can be defined as follows:

Si|ψ̂〉 =

{
|ψ̂〉, SiP = PSi

−|ψ̂〉, SiP = −PSi.
(44)

Therefore, the stabilizer operators naturally have to inherit the

commutative property. Consequently, the product between

the stabilizer operators Si yields another legitimate stabilizer

operator. Furthermore, the commutativity property implies

that

Si|ψ〉 = Sj|ψ〉 = SiSj|ψ〉 = |ψ〉, ∀Si,j ∈ S, (45)

suggesting that the stabilizer group S is closed under multi-

plication.

Based on the syndrome measurement by the stabilizer

operators Si, a recovery operator constituted by the n-tupple

Pauli operator of R ∈ Gn seen in Fig. 11 is applied to

the corrupted physical qubit state |ψ̂〉, yielding the predicted

state of the original encoded logical qubit |ψ ′〉, which is

formulated as

|ψ ′〉 = R|ψ̂〉. (46)

Finally, the inverse encoder V† of Fig. 11 performs the fol-

lowing transformation5:

V
†|ψ ′〉 = V

†
R|ψ̂〉

= V
†
RP|ψ〉

= V
†
RPV(|ψ〉 ⊗ |0〉⊗(n−k))

= (L|ψ〉) ⊗ (M|0〉⊗(n−k)), (47)

where we have V†RPV ≡ L⊗M andL ∈ Gk represents the

error inflicted on the logical qubits according to |ψ ′〉 = L|ψ〉,
whileM ∈ Gn−k represents the residual error remained in the

(n − k) auxiliary qubits after the error correction procedure.

In the case of R = P , we arrive at RP = I⊗n, where
I⊗n denotes an n-fold tensor product Pauli-I matrix. Another

possibility is to arrive at RP = Si. In either of these cases,

the state of the physical qubits is not altered, since we have

5The inverse encoder V† is the Hermitian transpose of encoder V . It
is referred to as the inverse, since it satisfies the unitary requirement of

V†V = I, as the inverse of the matrix does.

RP|ψ〉 = |ψ〉. Therefore, the decoding procedure of Fig. 11
successfully recovers the original quantum state constituted

by the logical qubits, yielding |ψ ′〉 = |ψ〉.
The stabilizer operators can be translated into the classi-

cal PCM H by mapping the Pauli matrices I, X, Y and Z

onto (F2)
2 as follows:

I →
(
0 | 0

)
,

X →
(
0 | 1

)
,

Y →
(
1 | 1

)
,

Z →
(
1 | 0

)
. (48)

This concept is also known as the Pauli-to-binary isomor-

phism. By exploiting the Pauli-to-binary isomorphism, the

stabilizer operators of any QSC can be represented as a pair

of PCMs Hz and Hz, where Hz is invoked for handling the

phase-flip (Z) errors and Hx for handling the bit-flip (X)

errors. Explicitly, the classical PCM representation of the

QSC stabilizer operators may be written as follows:

H = (Hz|Hx) . (49)

The classical representation of the stabilizer operators gives

the advantage of predicting and evaluating the performances

of QSCs by treating them similarly to classical error correc-

tion codes. Additionally, it allows us to transform a pair of

classical PCMs into the correponding quantum counterpart.

However, to ensure that the commutative property is pre-

served in the quantum domain, a pair of classical PCMs have

to satisfy the so-called symplectic criterion [6] given by

Hz · HT
x + Hx · HT

z = 0. (50)

A special class of QSCs, namely the family of Calderbank-

Shor-Steane (CSS) codes, treats the phase-flip (Z) and bit-

flip (X) errors as two separate entities. More specifically,

this can be interpreted as having the PCMs of Hz and Hx

in Eq. (49) formulated as Hz =
(
H′
z

0

)
and Hx =

(
0

H′
x

)
,

respectively. Therefore, the binary PCM H can be expressed

as follows:

H =
(
H′
z 0

0 H′
x

)
. (51)

Consequently, the symplectic criterion given in Eq. (50) can

be reduced to the following criterion:

H′
z · H′

x
T = 0. (52)

Furthermore, we can formulate a CSS code by using a PCM

of H′
z = H′

x and the resultant quantum code may be referred

to as a dual-containing quantum CSS code or self-orthogonal

quantum CSS code. For dual-containing CSS codes, the sym-

plectic criterion can be further simplified to H′
zH

′
z
T = 0. For

a more detailed example, please refer to [38].
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FIGURE 12. Example of qubit arrangement on a rectangular lattice
structure. The black circle-based qubits on the edges of the lattice
represent the physical qubits or the encoded state, the red square-based
qubits lying on the vertices of the lattice act as the X stabilizer operators,
while the blue triangle-based qubits lying on the plaquettes (faces) of the
lattice constitute the Z stabilizer operators.

IV. QUANTUM TOPOLOGICAL ERROR CORRECTION

CODES: DESIGN EXAMPLES

Let us now delve deeper into the TECC concept in the quan-

tum domain. The quantum version of TECCs, namely the

QTECCs, constitute a member of the QSC family, whose

stabilizer operators are defined by the underlying lattice

structure. This formalism offers several benefits for the

implementation of quantum computers. Firstly, it explic-

itly accommodates the physical implementation of quantum

memory by mapping the qubits to the lattice arrangement

exemplified by Fig. 4 and 5. Secondly, the localized nature of

the stabilizer measurements confines the interaction amongst

qubits and also eliminates the interaction of qubits associ-

ated with a specific quantum gate that physically far from

each other. Thirdly, the number of errors corrected can be

increased simply by extending the size of the lattice. For

now, let us assume having a square lattice structure similiar

to Fig. 4 for defining the stabilizer operators of a surface code

illustrated in Fig. 12 [24]. Explicitly, surface codes represent

the quantum equivalent of classical TECCs on rectangular

lattice structures. The physical qubits are portrayed by the

black circles laying on the edge of the lattice, the X stabilizer

operators are defined by the red squares on the lattice vertices,

while the Z stabilizers are defined by the blue triangles on the

lattice plaquettes (faces). The stabilizer operators of QTECCs

are defined as follows:

Av =
∏

i∈vertex(v)
Xi, Bp =

∏

i∈plaquette(p)
Zi, (53)

where i indicates the index of stabilizer operators contain-

ing the Pauli matrix X as well as Z and the rest of the

stabilizer operators are given by the Pauli identity matrix I.

Hence, the encoded state of the physical qubits of QTECCs is

constrained within a code space C satisfying

C = {|ψ〉 ∈ H|Av|ψ〉 = |ψ〉,Bp|ψ〉 = |ψ〉; ∀v, p}. (54)

More specifically, let us revisit Fig. 12 for exemplifying the

construction of the stabilizer operators of a QTECC, namely

of the surface codes, which is one of the QTECC construc-

tions whose stabilizer operators are defined by a rectangular

lattice structure [24]. For instance, the red square on the ver-

tex number 3 of Fig. 12 represents theX stabilizer operator of

A3 = X4X6X7X9
6 as seen in the row S3 of Table 8. Similarly,

the blue triangle on the plaquette number 5 of Fig. 12 defines

the Z stabilizer operator of B5 = Z7Z9Z10Z12 as seen in the

line B5 of Table 8. By performing the same evaluation for all

of the red squares and blue triangles, we arrive at the stabilizer

operators for the quantum surface codes, as listed in Table 8.

TABLE 8. The stabilizer operators (Si ) of the quantum surface code
having the lattice construction of Fig. 12. The code has a minimum
distance of 3 (d = 3), which means that it is only capable of
correcting a single qubit error.

Let us now consider an example of how the error correc-

tion procedure works using the QTECCs, which is similar

to the classical TECCs, by revisiting Fig. 12. For instance,

let assume that the quantum decoherence imposes a bit-

flip (X) error on the physical qubit index 7. Since, the X-

type error commutes with the Z stabilizer operators, which

are represented by the blue triangles, the adjacent Z stabilizer

operators return the eigenstate values of −1 upon measure-

ment. Consequently, the Z stabilizer measurements yield a

syndrome vector of sz = [0 1 0 0 1 0], where only the

vector elements of i = 2, 5 have the value of 1. For the

short block code considered in Fig. 12, the error recovery

operatorsR of Fig. 11 are determined based on hard-decision

maximum-likelihood (ML) decoding, which is translated into

a simple look-up table (LUT) decoder. Therefore, based on

the syndrome vector of sz, the error recovery operator R of

Fig. 11 is given byR = X7. Likewise, let us now assume that

the qubit on index 7 also suffers from a Z-type error imposed

by the quantum channel. The associated syndrome vector

gleaned from the X stabilizer operators is sx = [0 0 1 1 0 0],

where only the vector elements of i = 3, 4 have the value

of 1. Thus, based on the syndrome vector of sx , the decoder

applies the error recovery operator ofR = Z7.

6This representation is used for simplifying the original stabilizer operator
of A3 = I1⊗I2⊗I3⊗X4⊗I5⊗X6⊗X7⊗I8⊗X9⊗I10⊗I11⊗I12⊗I13.
For the rest of this paper, the simplified notation is used.

VOLUME 6, 2018 13743



D. Chandra et al.: QTECCs: The Classical-to-Quantum Isomorphism Perspective

FIGURE 13. Example of a qubit arrangement for colour code, which is a
type of QTECCs whose stabilizer operators are defined by a triangular
lattice structure. The black circles-based qubits on the vertices of the
lattice represent the physical qubits, while the faces or the plaquettes of
the lattice denoted by red squares define stabilizer operators of the
colour code. The resultant code has a minimum distance of d = 3 and
hence becomes capable of correcting a single qubit error. This specific
configuration bears a resemblance to the C[7,1,3] Steane’s 7 qubit code.

Again, similar to the classical TECCs, the construction of

QTECCs is indeed not limited to the square lattice structure.

Let us now elaborate on another construction inspired by

the construction proposed in [25] using the triangular lattice

based on the classic example of Fig. 5. In the proposal of [25],

this specific code construction is often referred to as the (tri-

angular) colour code, since the underlying triangular lattice

is composed by the tri-coloured hexagonal tiles. However,

constructing the stabilizer operators of colour codes slightly

differs from that of the surface codes. The colour codes use

the lattice plaquettes to define both the Z and X stabilizer

operators. Consequently, the resultant colour codes belong to

the family of dual-containing CSS codes, which is in contrast

to the surface codes that belong to the class of non-dual-

containing CSS codes. For colour codes, defining both the Z

and X stabilizer operators using the same plaquette always

guarantees satisfying the symplectic criterion of Eq. (50).

However, for surface codes, we cannot always satisfy the

symplectic criterion by using the same procedure. Therefore,

the dual of the lattice is used for defining half of the stabilizer

operators of the surface codes in order to satisfy the symplec-

tic criterion.7

Let us consider Fig. 13 for constructing the stabilizer

operators of distance-3 colour codes, which are only capable

of correcting a single qubit error. The plaquette denoted by

red square at index 3 is used to define both the Z and X

stabilizer operators. Thus, the resultant X stabilizer operator

is A3 = X2X4X6X7 and the resultant of Z stabilizer operator

is B3 = Z2Z4Z6Z7. The stabilizer operators for the colour

code having the minimum distance 3 in Fig. 13 are listed

7The dual of a lattice or a graph G is the graph that has a vertex for each
plaquette of the graph.

in Table 9. We can observe that the colour code of Fig. 13

exhibits a strong resemblance to Steane’s 7-qubit code.

TABLE 9. The stabilizer operators (Si ) of the colour code seen in Fig. 13.
The code has a minimum distance of 3 (d = 3), which means that it is
only capable of correcting a single qubit error.

To draw on the parallelism between classical TECCs and

QTECCs, let us consider the stabilizer operators of the colour

code having a minimum distance of d = 3, as seen in Table 9.

Since the distance-3 colour code belongs to the family of

quantum CSS codes, the PCM H obtained by using Eq. (48)

and (51) is encapsulted as follows:

A CSS stabilizer code C[n, k, d] having (n − k) stabilizer

operators can be portrayed as a classical code having a PCM

H containing (n−k)×2n elements. Therefore, the coding rate

of the classical dual of a quantum CSS code can be expressed

as follows [11]:

rC =
2n− (n− k)

2n
,

=
n+ k

2n
,

=
1

2

(
1 +

k

n

)
,

=
1

2

(
1 + rQ

)
, (56)

where rC is the coding rate of the classical dual of the stabi-

lizer code C[n, k, d] exhibiting a quantum coding rate of rQ.

The relationship between the classical and quantum coding

rate in Eq. (56) can be rewritten as

rQ = 2rC − 1. (57)

For instance, let us consider the distance-3 colour codes

C[n, k, d] = C[7, 1, 3], as exemplified in Fig. 13, and its

classsical dual C(n, k, d) = C(7, 4, 3),8 as seen in Fig. 5.

Explicitly, we have the classical coding rate of rC = 4/7

for the C(7, 4, 3) code. By substituting rC = 4/7 into

Eq. (57), we obtain the quantum coding rate for its quantum

counterpart as rQ = 1/7, which is the quantum coding rate

of distance-3 colour code C[7, 1, 3]. The same goes for the

classical square codes and their quantum counterpart, namely

for the surface codes. Let us consider the distance-5 classical

square code, which is labeled by S2 in Fig. 8 and its quantum

pair, which is labeled by S2 in Fig. 14. We can readily

determine the quantum coding rate of the surface code S2

C[41, 1, 5], which is rQ = 1/41. Therefore, by substituting

rQ = 1/41 into Eq. (56), we arrive at the coding rate of

its classical dual given by rC = 21/41, which is indeed the

coding rate of the classical square code S2 C(41, 21, 5).

8To avoid ambiguity, we use the notation C(n, k, d) for classical error
correction codes and C[n, k, d] for quantum stabilizer codes.
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FIGURE 14. The minimum distance (d ) versus quantum coding rate (rQ) of QTECCs based on the code
parameter given in Table 10. For QTECCs, the quantum coding rate tends to zero as we increase the
minimum distance. We also include quantum Hamming codes and the QBCH codes having n = 127 physical
qubits for the sake of comparing the QTECCs with the non-topological QSCs. The parameters of quantum
Hamming codes and QBCH codes are listed in Table 11 and 12, respectively.

TABLE 10. The code parameters for various QTECCs based on the minimum distance d of the code.

Similar to their classical counterparts, the code parameters

of QTECCs, such as the number of logical qubits k , the

number of physical qubits n, the minimum distance of the

code d , as well as the quantum coding rate rQ, depend on the

size of the lattices. Following the same line of investigation as

for the classical TECCs, we derive the complete formulation

for the number of logical qubits k and the number of physical

qubits n as a function of the minimum distance of the codes,

which is given in Table 10. We plot the minimum distance (d)

versus quantum coding rate (rQ) of QTECCs in Fig. 14 for

colour codes [25], for rotated surface codes [31], for surface

codes [24] and for toric codes [22]. We also include the

non-topological QSCs, namely the QBCH codes [7] hav-

ing n = 127 physical qubits and the quantum Hamming

codes, which constitute the quantum analogue of Hamming

bound-achieving code constructions [42]. Similarly to the

H =




1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 1 0 1 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 0

0 0 0 0 0 0 0 0 1 0 1 0 1 1



. (55)
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FIGURE 15. The normalized minimum distance versus quantum coding rate of QTECCs based on parameter
given in Table 10. For QTECCs, the normalized minimum distance and quantum coding rate tend to zero as
we increase the minimum distance. We also include the QBCH codes having the physical qubits of n = 127,
quantum Hamming codes, quantum Hamming bound and also quantum GV bound for CSS codes for the
sake of comparing the QTECCs with the non-topological QSCs.

TABLE 11. Code parameters of quantum Hamming codes having a single
error correction capability, which is used in Fig. 14 and 15. The quantum
coding rate rQ and normalized minimum distance δ are calculated using
Eq. (1) and (17), respectively.

classical domain, the behaviour of both the QBCH codes and

the quantum Hamming codes is as expected, exhibiting the

behaviour inherited from their classical analogues. However,

it is interesting to observe that the quantum coding rate of

QTECCs tends to zero for long codewords. Nevertheless,

this phenomenon is expected, if we consider the classical

to quantum isomorphism in the context of the coding rate

given in Eq. (56) and (57). For the classical TECCs, the

coding rate rC approaches the value of rC = 1/2 for long

codewords. Hence, by substituting rC = 1/2 into Eq. (57),

we arrive at rQ = 0, which is the phenomenon we observe

in Fig. 14.

TABLE 12. Code parameters of QBCH codes having codeword length of
n = 127, which is used in Fig. 14 and 15. The quantum coding rate rQ and
normalized minimum distance δ are calculated using Eq. (1) and (17),
respectively.

Next, we plot the normalized minimum distance (δ) versus

the quantum coding rate (rQ) in Fig. 15. Once again, for the

sake of comparison, we also include the quantum Hamming

bound [43] and the quantum GV bound derived for CSS

codes [44] in addition to the QBCH codes and the quantum

Hamming codes. The quantum Hamming bound is defined

by [43]

k

n
≤ 1 −

(
d

2n

)
log2 3 − H

(
d

2n

)
, (58)

while the quantum GV bound for CSS codes is given by [44]

k

n
≥ 1 − 2H

(
d

n

)
. (59)
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Both the quantum Hamming bound and the quantum GV

bound of Fig. 15 serve the same purpose as the classical

Hamming bound and the GV bound seen in Fig. 9. Explic-

itly, they portray the upper bound and the lower bound of

normalized minimum distance versus quantum coding rate

trade-off. Once again, the puzzling behaviour of classical

TECCs resurfaces for the QTECCs, as observed in Fig. 15.

Since all the QBCH codes, quantum Hamming codes and

QTECCs inherit the properties of their classical counterparts,

their behaviour is reminiscent of that of their classical coun-

terparts. As for the QTECCs, the definitive interpretation of

this unusual behaviour is left for future exploration in our

research. Nonetheless, for a relatively long codeword, the

QTECCs are reminiscent of QLDPC codes. Observe from

Fig. 15 that both the normalized minimum distance and the

quantum coding rate of QTECCs tend to zero upon increasing

the minimum distance by increasing the codeword length.

Therefore, the QTECCs are deemed to be more favourable

for short to medium codeword lengths.

V. PERFORMANCE OF QUANTUM TOPOLOGICAL ERROR

CORRECTION CODES

In this treatise, we consider the performance of QTECCs

under the popular quantum depolarizing channel. Explicitly,

the quantum depolarizing channel is characterized by the

quantum depolarizing probability p inflicting an error pattern

constituted by the Pauli operators P ∈ Gn upon the state of

physical qubits, where each qubit may independently expe-

rience a bit-flip error (X), a phase-flip error (Z), or both bit-

flip and phase-flip error (Y) with an equal probability of p/3.

In order to get a more precise insight into the performance

trends of QTECCs, we have to distinguish how the different

error patterns affect the state representing the physical qubits.

Explicitly, the n-tupple Pauli error pattern may be classified

as follows, which will be exemplified in Fig. 16 and 17 after

their definitions:

1) Harmful detected error pattern. This specific type

of error pattern has a similarity to the conventional bit

error in the classical domain. The error pattern of P

anti-commutes with the stabilizer operators Si ∈ S ,

hence triggers non-trivial syndrome values.

2) Harmful undetected error pattern. The error pattern

commutes with all of the stabilizer operators, except

that it does not belong to the stabilizer group S . In the

classical domain, this is similar to the error pattern

that returns the all-zero syndrome. The error pattern is

harmful, since it does not trigger a non-trivial syndrome

value, yet it corrupts the legitimate state of the physical

qubits.

3) Harmless undetected error pattern. This particular

error pattern does not have any classical analogue. The

error pattern is harmless, because it belongs to the

stabilizer group S . This is also referred to as a degener-

ate error pattern. Consequently, the error patttern does

not alter the legitimate state of the physical qubits.

By considering the degeneracy, the actual perfor-

mances of QTECCs are potentially improved.

In order to illustrate both the harmless and harmful unde-

tected error patterns, we refer to Fig. 16 and 17. First, we

commence with the harmless undetected error pattern, which

is illustrated in Fig. 16. In this example, we consider a surface

code having a minimum distance of 5, which implies that it

is only capable of correcting two qubit errors. Following the

stabilizer formulation of QTECCs discussed in Section IV,

the physical qubits are arranged along the edges of the square

lattice, while the X stabilizer operators are located in the ver-

tices. Therefore, the X stabilizer operators on the vertices are

used for indicating the Z errors, which will trigger eigenval-

ues of−1 if they anticommute with theX stabilizer operators.

Let us assume that the quantum depolarizing channel inflicts

threeZ errors on the physical qubits, which are denoted by the

filled black circles in Fig 16, while the hollow black circles

represent the error free physical qubits. All of the error pat-

terns given in Fig 16 (a), (b), and (c) trigger the eigenvalues of

−1 for the stabilizer operators denoted by filled red squares,

while the rest of the stabilizer operators are represented by

hollow red squares, which return eigenvalues of+1. Since the

decoder relies on hard-decision ML decoding, all of the error

patterns given in Fig. 16 (a), (b), and (c) have the same prob-

ability of occurence. Let us assume that the decoder always

decides to apply the error recovery pattern of Fig. 16 (a)

for the specified values of stabilizer measurement. When the

actual error pattern is the one given in Fig. 16 (a), the states

of the physical qubits are fully recovered. By contrast, if the

actual error pattern is the one seen in Fig. 16 (b), but it is

corrected using the error recovery operator of Fig. 16 (a), we

arrive at the accumulated error pattern shown in Fig. 16 (d).

Lastly, when the actual error pattern is the one given by

Fig. 16 (c), but we attempt to correct it using the error recov-

ery of Fig. 16 (a), we obtain the error pattern seen Fig. 16 (e).

However, if we observe closely the error pattern illustrated

in Fig. 16 (d), it is reminiscent of a plaquette Z stabilizer

operator denoted by the filled blue triangle. Therefore, based

on the definition of stabilizer operators, the error pattern given

in Fig. 16 (d) does not alter the legitimate state of physical

qubits. Similarly, the error pattern of Fig. 16 (e) resembles

the product of two adjacent plaquette stabilizer operators.

Since the product between a pair of stabilizer operators return

another valid stabilizer operator, the error pattern given in

Fig. 16 (e) belongs to the stabilizer group S . Once again,

by definition, the error pattern given in Fig. 16 (e) does not

corrupt the legitimate state of physical qubits. This is an

example of harmless undetectable error patterns.

To elaborate a little further, a harmless undetected error can

be directly generated by the quantum decoherence, where the

Pauli operator P ∈ Gn imposed by the quantum depolarizing

channel is identical to the stabilizer operator Si. Another

possibility is that it is generated by the associated error recov-

ery procedure, when trying to recover an ambiguous error

pattern, where there are more than one possible error patterns

associated with a specific syndrome value, as illustrated in
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FIGURE 16. Illustration of how the error recovery operator R creates the degenerate error patterns and how the degeneracy nature of QECCs
may improve the performance of QTECCs. All of error patterns given in (a), (b) and (c) represent error patterns generating an identical
syndrome value. Without lose of generality, let us assume that based on the generated syndrome value, the decoder always decides to
perform error recovery operator R of (a) on the corrupted state of physical qubits. If the actual error pattern is (a), the corrupted state of
physical qubits will be fully recovered. By contrast, figure (d) shows the resultant error pattern if the actual error pattern is (b), but it is
corrected using the error pattern given in (a). Moreover, figure (e) represents the resultant error pattern if the actual error pattern is (c) and it
is corrected using the error recovery pattern of (a). As the result, the error pattern (d) represents a stabilizer operator of a plaquette, while the
error pattern (e) resembles the product of two adjacent stabilizer operators. Both error patterns of (d) and (e) constitute the harmless
undetecteable error patterns, since they belong to the stabilizer group S. Therefore, the state of physical qubits is not altered after the
recovery operator R of (a) is applied to all error patterns of (a), (b) and (c). In classical set up, both error patterns (d) and (e) are considered
as error events. However, in quantum domain, both error patterns (d) and (e) are considered as error-free cases. This specific error-type has
no similarity in quantum domain and hence potentially improves the performance of QTECCs.

Fig. 16. The degeneracy property, which is associatedwith the

harmless undetectable error patterns, does not have a classical

analogue, because in the classical setup, the resultant error

patterns illustrated in Fig. 16 (d) and (e) will always be con-

sidered as an error. Ultimately, considering the degeneracy

potentially improves the performance of QECCs.

Let us consider a range of different scenario for illustrating

the presence of harmful undetected error patterns, which is

portrayed in Fig. 17. Similar to the previous example of

Fig. 16, three Z errors are imposed on the state of logical

qubits by the quantum depolarizing channel. The error pat-

terns given in Fig. 17 (a) and (b) trigger the eigenvalues of−1

for the stabilizer operators denoted by filled red squares in

Fig. 17, while the rest of the stabilizer operators represented

by hollow red squares return eigenvalues of +1. Given the

associated syndrome value, the decoder always decides to

apply the error recovery operator of Fig. 17 (a). In the specific

scenario, where the actual error pattern is the one given by

Fig. 17 (b), the resultant error pattern is given in Fig. 17 (c).

We can observe that the resultant error pattern of Fig. 17 (c)

commutes with all of the stabilizer operators in Fig. 17.

However, this specific error pattern does not belong to the sta-

bilizer operator S , since we cannot represent a chain of errors

by the product of stabilizer operators. Consequently, this

undetectable error pattern inevitably corrupts the legitimate

state representing the physical qubits. This is an example of

the harmful undetectable error patterns. This error pattern is

similar to that of its counterpart in the classical domain, where

the error pattern returns the all-zero syndrome.

Therefore, based on these conditions, by modifying the

probabilty of correct decoding in the classical domain [45],

we can readily formulate the worst-case upper-bound QBER

performance of QTECCs as

QBERupper(n, d, p) = 1 −
t=⌊ d−1

2 ⌋∑

i=0

(
n

i

)
pi(1 − p)n−i

−
|S|∑

i=1,∀Si∈S
pw(Si)(1 − p)n−w(Si),

(60)

wherew(Si) is theweight of the stabilizer operator Si, which is

defined by the number of non-identity Pauli operators within

the stabilizer operators. The second term of Eq. (60) repre-

sents all the correctable error patterns of QTECCs, while the

last term of Eq. (60) represents the degenerate error patterns
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FIGURE 17. Illustration of the harmful undetectable error pattern in quantum domain. The actual error pattern
inflicts the state of physical qubits is given in (b), while the decoder always decides to perform a recovery
operator given in (a). Instead of recovering the legitimate state of the physical qubits, the specified error
recovery procedure generates a chain of error that commutes with all of the stabilizer operators, as shown
in (c). In quantum domain, it constitutes the harmful undetectable error patterns. In classical domain, it
resembles the error pattern that generates all-zero syndrome values.

that belong to the stabilizer operators. For example, let us

revisit the construction of the surface codes of Fig. 12. There

are 12 stabilizer generators for a distance-3 surface code,

as seen in Table 8. Hence, we can potentially generate in

total 212 unique stabilizer operators, since the product of the

stabilizer operators returns another valid stabilizer operator.

However, in order to further simplify the expression given

in Eq. (60), we only consider the error patterns resembling

the specified stabilizer operators given in Table 8, since they

exhibit a lower weight of non-identity Pauli matrices and

hence have a higher probability of occurance. Therefore, for

surface codes, the last term of Eq. (60) can be approximated

as (2d2 − 2d)p4(1 − p)n−4. The term (2d2 − 2d) represents

the number of stabilizer operators, which is given in Table 10,

and we assume that all the weight of the stabilizer operators

w(Si) are equal to 4.

A. QBER VERSUS DEPOLARIZING PROBABILITY

In order to characterize the performance of QTECCs by

simulations, we exploit the fact that the QTECCs belong to

the family of quantum CSS codes, which handle the bit-

flips (X) and phase-flips (Z) separately. Hence, we invoke

two independent binary symmetric channels (BSC), one for

the X channel and one for the Z channel, where each channel

is characterized by the flip probability of 2p/3, where p is the

associated depolarizing probability of the quantum depolariz-

ing channel [13], [16]. The decoder utilizes hard-decisionML

decoding relying on a simple LUT decoder, as exemplified in

Section III. However, this classical-domain simulation only

represents the performance of QTECCs without considering

the degenerate error patterns. To elaborate a little further,

we generate all-zero information bits at the input and send

them through the two independent BSC channels. Therefore,

we always consider all of non all-zero decoded bits at the

decoder output as an error. However, in order to additionally

consider several cases of degenerate error patterns, which is

exemplified in Fig. 16, we performed an additional evaluation

step. We evaluate the non all-zero corrected received words

and check for the degenerate error patterns. If it satisfies

the degenerate error pattern criterion that we have defined

above, we conclude that this is an error free case. However,

we are not capable of providing a complete list of all possible

degenerate error patterns and in this treatise we only consider

the error pattern resembling the stabilizer generators of Si,

which is exemplified in Table 8 and 9 for surface codes and
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FIGURE 18. QBER performance of the distance-3 surface code,
rotated-surface code and colour code over the quantum depolarizing
channel, which is capable of correcting a single qubit error. The code
parameters are given in Table 13. For this scenario, the decoder using
hard-input ML decoding approach for predicting the error pattern.
(a) Colour code. (b) Rotated surface code. (c) Surface code.

triangular codes, respectively. The QBER performance of

distance-3 QTECCs versus the quantum depolarizing prob-

ability is portrayed in Fig. 18, where the code parameters

are given in Table 13. We also include the upper bound

of the QTECCs performance of Eq. (60) in Fig. 18. It can

TABLE 13. Code parameters for distance-3 colour code, rotated surface
code and surface code.

be clearly observed that the upper bounds match with the

QTECCs performance without considering the degenerate

error patterns.

As we mentioned earlier, there are two sources of the

degenerate error pattern at the output of the decoder. First,

the degenerate error patterns that imposed ubiquitous directly

by the quantum channel, where the error exhibits an identical

pattern to the stabilizer operator Si. Second, the degenerate

error pattern generated by the recovery operator R, when it

tries to recover the legitimate physical qubits, as illustrated

in Fig. 16. The second case is more dominant than the first

one. The reason can be explained as follows. Let us assume

the Z stabilizer operators of distance-3 surface code given

in Table 8. There are six Z stabilizer operators correspond

to the 26 = 64 possible syndrome vector, including the

error-free scenario. Remember that the distance-3 surface

code can only flawlessly correct a single error qubit within

the block of 13 physical qubits, where each of the single

qubit error pattern is associated with only one syndrome

vector. In other words, amongst all of 64 possible syndrome

vectors, there are only 13 syndrome vectors used to uniquely

distinguish the correctable error patterns, while the rest of

the syndrome vectors are associated with the error pattern

ambiguity, as exemplified in Fig. 16 and 17. Due to this

reason, the QTECCs are considered as the highly degenerate

QSCs. Hence, the upper bound of the QBER performance

matches the simulation-based performance recorded without

considering the degeneracy, since it considers only the first

source of the degeneracy, where only a portion of all valid sta-

bilizer operators Si ∈ S in Eq. (60) is included in calculation.

However, by accommodating both of the degeneracy cases,

the QBER performance of QTECCs is indeed improved, as

displayed in Fig. 18.

Increasing the minimum distance of a given QSC con-

struction, which directly improves its per-codeword error cor-

rrection capability (t), is achieved by increasing the number

of physical qubits (n) or by decreasing the quantum coding

rate. Specifically for QTECCs, increasing the minimum dis-

tance means simultaneously increasing the number of phys-

ical qubits (n) and decreasing the quantum coding rate (rQ).

Naturally, the goal of increasing the minimum distance of the

QSCs is to achieve a better QBER performance. However, the

improvement of QBER the performance can only be observed

below a certain value of depolarizing probability (p), which

may be referred to as the threshold probability (pth). Using

the upper bound QBER performance of Eq. (60), we plot

the QBER curves for colour, rotated-surface, surface and
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FIGURE 19. Upper bound QBER performance of QTECCs for the minimum distance of d = {3,5,7,9,11} based on Eq. (60) and the code
parameters given in Table 10. The crossover amongst the QBER curves represents the threshold probability (pth), which are portrayed in
dashed line. (a) Upper bound QBER performance of colour codes. (b) Upper bound QBER performance of rotated-surface codes.
(c) Upper bound QBER performance of surface codes. (d) Upper bound QBER performance of toric codes.

toric codes in Fig. 19. For each of the QTECC construc-

tions, we portray the upper bound QBER performance for

the minimum distances of d = {3, 5, 7, 9, 11}. The threshold
probability of each code is denoted by the crossover QBER

curves, which we portray in dashed line. The threshold prob-

ability of colour, rotated-surface, surface and toric codes are

1.83 × 10−2, 1.34 × 10−2, 6.28 × 10−3 and 6.77 × 10−3,

respectively.

B. QBER VERSUS DISTANCE FROM HASHING BOUND

Presenting the performance of QTECCs over quantum depo-

larizing channel by portraying the QBER curves versus the

depolarizing probability (p) does not take the quantum coding

rate (rQ) into consideration. As we mentioned earlier, we

can simply decrease the quantum coding rate further and

further in order to increase the error correction capability

of the QTECCs. Nonetheless, for the sake of depicting a

fair comparison upon reducing the quantum coding rate, we

have to scrutinize how much performance improvement we

obtain upon decreasing the quantum coding rate. Therefore,

in order to demonstrate howmuch performance improvement

we attain compared to the how much we decrease the quan-

tum coding rate, we normalize the QBER performance by

incorporating the quantum hashing bound. More explicitly,

the quantum hashing bound can be expressed as follows [46]:

CQ(p) = 1 − H (p) − p. log2(3), (61)

where H (p) is the binary entropy of p. More specifically, the

quantum hashing bound of Eq. (61) dictates that a random

quantum code C having a sufficiently long codeword and a

quantum coding rate rQ ≤ CQ(p) may yield an infinitesimally

low QBER for a given depolarizing probability p. Alterna-

tively, we can refer to CQ(p) as the hashing limit for the

quantum coding rate rQ associated with a given depolarizing

probability p. In terms of its classical dual pair, the value

of CQ is similar to the capacity limit. Similarly, for a given

coding rate rQ, we can find a value of p∗ satisfying rQ =
CQ(p

∗), where p∗ denotes themaximumvalue of depolarizing

probability p so that a quantum code C having quantum

coding rate of rQ can operate at an infinitesimally low QBER.

The value of p∗ may be referred to as the hashing limit for

depolarizing probability of p associated with a given quantum

coding rate rQ. In classical domain the value of p∗ is similar to

the noise limit. Therefore, in general, the aim is that of finding
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FIGURE 20. Upper bound performance of QTECCs in term of the QBER versus the distance D from the hashing bound. The code
parameters are given in Table 10. The dashed lines portray the ultimate distance to the quantum hashing bound of D0 = 0.1893.
(a) Upper bound performance of colour codes. (b) Upper bound performance of rotated surface codes. (c) Upper bound performance of
surface codes. (d) Upper bound performance of toric codes.

a QSC that is capable of performing as close as possible to the

quantum hashing bound.

For example, let us consider the distance-3 and distance-5

rotated surface codes having quantum coding rate of rQ =
1/9 and rQ = 1/25, respectively. By substituting CQ = 1/9

and CQ = 1/25 into the Eq. (61), we obtain the noise limit

of p∗ = 0.160 and p∗ = 0.179, respectively. It is clearly seen

that the noise limit is higher for the quantum code exhibiting

a lower quantum coding rate. To incorporate the quantum

hashing bound into the QBER performances of QTECC, we

define the distance from hashing bound as follows:

D , p(rQ) − p, (62)

where p(rQ) is the hashing limit for depolarizing probability

of p associated with a given quantum coding rate rQ. In other

words, by changing the horizontal axis from the depolarizing

probability p to the distance D from hashing bound, we shift

all the QBER curves according to their hashing bounds, so

that all the hashing bounds are at the reference point ofD = 0.

Several pertinent questions arise from the quantum hashing

bound formulation. Firstly, is there a noise limit, where no

QSC constructions are capable of achieving a satisfactorily

low QBER? Indeed, the answer is yes. By substituting the

CQ = 0 into Eq. (61), which is the lowest possible value

of achievable quantum coding rate, we arrive at the ultimate

hashing bound of p(0) ≈ 0.1893. Secondly, what is the

farthest possible distance from the quantum hashing bound

for any QSC construction. To answer this question, we have

to consider the worst-case scenario, where a QSC exhibiting

a near zero quantum coding rate (rQ ≈ 0) achieves an

infinitesimally low QBER at near zero quantum depolarizing

probability (p ≈ 0). By substituting the value of rQ = 0

and p = 0 into Eq. (62), we define the ultimate distance of

hashing bound D0 as

D0 = p(0) − p

= 0.1893 − 0

= 0.1893. (63)

Therefore, the desirable performance of any QSCs quantified

in terms of the QBER versus distance from the quantum

hashing bound is represented by the curves exhibiting a rea-

sonably low QBER as close as possible to the reference point

of D = 0. Naturally, this implies having a low QBER as
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FIGURE 21. The performance of QTECCs having a minimum distance of 3
in terms of fidelity of Eq. (64). The colour code reaches the fidelity
threshold earlier than the rotated-surface and surface code, since the
colour code has the lowest number of physical qubits compared to the
rotated surface code and the surface code. The code parameters are given
in Table 13.

far as possible from the ultimate distance from the hashing

bound of D0 = 0.1893. In simpler terms, any QSCs can

only operate at a reasonably low QBER within the hashing

bound range of 0 ≤ D ≤ D0. Consequently, we should

consider the reduction of the quantum coding rate rQ as

beneficial only if the associated QBER performance curve

moves closer to the reference point of D = 0. Otherwise, it is

more advisable to find a better code construction exhibiting

an identical quantum coding rate, to increase the number of

physical qubits, while maintaining the quantum coding rate,

or to invoke more powerful decoding scheme, for example

by utilizing a soft-decision-aided decoder. The QBER perfor-

mance of QTECCs versus their distances from the quantum

hashing bound are portrayed in Fig. 20. It can be observed that

even though increasing theminimumdistance of theQTECCs

yields a performance improvement in terms of their QBER

versus depolarizing probability p shown in Fig. 19, in terms

of their distance from the hasing bound D, at low QBER, the

curves are crowded in the vicinity of the ultimate hashing

bound distance of D0. Moreover, the results show an agree-

ment with the quantum coding rate versus minimum distance

evolution of QTECCs seen in Fig. 15. The improvement of

the minimum distance, which is directly linked to the error

correction capability, upon reducing the quantum coding rate

is not fast enough to compensate the increasing number of

physical qubits. Therefore, we believe that QTECCs are most

suitable for short to moderate codeword lengths.

C. FIDELITY

From an implementational perspective, a quantum gate or

quantum channel is often characterized by the so-called

fidelity, which represents the closeness of a pure quan-

tum state of |ψ〉 compared to the mixed states having

the quantum density operator of ρ. More explicitly, since

the quantum channel imposes the quantum decoherence

on our legitimate quantum state representing the physical

qubits |ψ〉, there is a probability that decoder does not suc-

cessfully recover the legitimate state. Therefore, the ensem-

ble of all the possible predicted legitimate state of physical

qubits |ψ̂〉 can be represented using the state of |ψi〉 hav-

ing a probability of pi. The fidelity can be formulated as

follows [47]–[49]:

F = 〈ψ |ρ|ψ〉. (64)

while ρ, which portrays the statistical characteristics of a the

mixed states, is defined by

ρ =
N∑

i=1

pi|ψi〉〈ψi|, (65)

where the |ψi〉 represents all of the possible state in

the ensemble and pi is the probability of having state

|ψi〉 in the ensemble, which is subject to unity constraint

of
∑N

i=1 pi = 1.

In order to demonstrate the benefit of QTECCs in the

context of quantum depolarizing channel, we compare the

so-called initial fidelity Fin and final fidelity Fout. The initial

fidelity is the fidelity of the pure quantum state of |ψ〉 over the
quantum depolarizing channel P unprotected by any QSCs

scheme. Therefore, the initial fidelity Fin can be expressed as

follows:

Fin = 1 − p. (66)

The final fidelity is that of the pure state of the desired

output |ψ ′〉 protected by the a QSC scheme after the recovery

procedure R and inverse encoder V† of Fig. 11. Therefore,

the final fidelity Fout of the quantum system can be readily

formulated as

Fout = 1 − QBER. (67)

The fidelity performance for the distance-3 QTECCs are

depicted in Fig. 21. The black solid line represents the con-

dition of Fin = Fout. The crossover point between the line of

Fin = Fout and fidelity performance curve of QTECCs is the

break-even point, which we may referred to as the threshold

fidelity Fth. The break-even point denotes the minimal ini-

tial fidelity required to ensure that we do acquire a fidelity

improvement upon the applicaton of the QSC scheme, which

is invoked for protecting the state of the physical qubits. The

upper bound of threshold fidelity Fth for the different types

of QTECCs having code parameters listed in Table 10 is

depicted in Fig. 22. It can be observed that different code fam-

ilies having various minimum distances d result in different

threshold fidelity Fth. For the QSCs utilizing hard-decision

syndrome decoding, we derive the upper-bound approxima-

tion formula for determining the value of Fth. First, from

VOLUME 6, 2018 13753



D. Chandra et al.: QTECCs: The Classical-to-Quantum Isomorphism Perspective

FIGURE 22. Upper bound fidelity performance of QTECCs. (a) Upper bound fidelity performance of colour codes.
(b) Upper bound fidelity performance of rotated surface codes. (c) Upper bound fidelity performance of surface codes.
(d) Upper bound fidelity performance of toric codes.

Eq. (60) and Eq. (67), we arrive at

Fout = 1 − QBERupper

= 1 −


1 −

t=⌊ d−1
2 ⌋∑

i=0

(
n

i

)
pi(1 − p)n−i




= 1 −
n∑

⌊ d−1
2 ⌋+1

(
n

i

)
pi(1 − p)n−i. (68)

For a low depolarizing probability p, the expression given in

Eq. (68) can be approximated in order to determine the upper

bound of the output fidelity as follows:

Fout ≈ 1 −
(

n

⌊
d − 1

2
⌋ + 1

)
p⌊ d−1

2 ⌋+1. (69)

Since the threshold fidelity satisfies the relationship of Fth =
Fin = Fout, we can substitute Fout = Fth and p = 1 − Fth
into Eq. (69). Finally, the upper bound for the threshold

probability can be encapsulated as

Fth(n, d) = 1 −
(

n

⌊
d − 1

2
⌋ + 1

)−1/⌊ d−1
2 ⌋
. (70)

For example, the threshold for a distance-3 colour code

having a quantum coding rate rQ = 1/7 based on Fig. 22

is Fth = 0.942, while using the upper bound approximation

of the fidelity threshold in Eq. (70) we have Fth = 0.952.

For the distance-3 of rotated surface code, surface code and

toric code, the threshold fidelity values based on Fig. 22 are

Fth = 0.968, Fth = 0.986 and Fth = 0.993, respectively.

By using the approximation of Eq. (70), the upper bound

fidelity thresholds are given by Fth = 0.972, Fth = 0.987
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and Fth = 0.994, respectively for the distance-3 rotated

surface code, surface code and toric code. Here, we use the

family of QTECCs as our representative examples, while the

threshold fidelity of Eq. (70) is generically applicable for any

QSCs using hard-decision syndrome decoding. Ultimately,

the implementation of QTECCs are capable of reducing

the effect of quantum decoherence, which is demonstrated

by the QBER reduction and also improving the reliability

of quantum channel, which is demonstrated by the fidelity

improvement.

VI. CONCLUSIONS

We portrayed the evolution of the topological error cor-

rection codes designed in the classical domain to their

quantum-domain dual pairs. We showed that by arranging

the bits of the codeword on a lattice structure in classi-

cal domain provides a benificial inherent error correction

capability. Furthermore, for a long codeword, the classical

topological error correction codes (TECCs) correspond to

the family of LDPC codes exhibiting attractive properties,

such as unbounded minimum distance as a function of the

codeword length, structured construction and a coding rate

of r = 1/2. By contrast, the quantum topological error

correction codes (QTECCs) are more suitable for applica-

tions requiring short to moderate codeword lengths, since the

quantum coding rate of QTECCs tends to zero for a long

codeword. We characterized the performance of QTECCs in

the face of the quantum depolarizing channel in terms of the

QBER attained. First, we showed that QTECCs are highly

degenerate quantum codes, therefore the classical simulation

is only capable of portraying the performance of QTECCs

without considering the degeneracy property. Secondly, we

demonstrated that increasing the minimum distance of the

QTECCs improves the QBER performance. Additionally, we

normalized the performance by taking the coding rate into

consideration by introducing the distance from the hashing

bound. Explicitly, we have shown that the growth of min-

imum distance of QTECCs upon increasing the codeword

length is not fast enough to compensate for the increased

codeword length. Consequently, the QBER performance of

QTECCs gradually tends to the ultimate distance from the

hashing bound. Finally, we determined the fidelity threshold

for QSCs based on hard-decision syndrome decoding, which

represents the minimum fidelity value required for a quantum

system in order to glean benefits from QSCs. Ultimately, the

employment of QSCs will improve the reliability of quantum

computers.
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Abstract—Quantum key distribution (QKD) constitutes a 

symmetric secret key negotiation protocol capable of maintaining 

information-theoretic security. Given the recent advances in QKD 

networks, they have evolved from academic research to some 

preliminary applications. A QKD network consists of two or more 

QKD nodes interconnected by optical fiber or free space links. 

The secret keys are negotiated between any pair of QKD nodes, 

and then they can be delivered to multiple users in various areas 

for ensuring long-term protection and forward secrecy. We 

commence by introducing the QKD basics, followed by reviewing 

the development of QKD networks and their implementation in 

practice. Subsequently, we describe the general QKD network 

architecture, its elements, as well as its interfaces and protocols. 

Next, we provide an in-depth overview of the associated physical 

layer and network layer solutions, followed by the standardization 

efforts as well as the application scenarios associated with QKD 

networks. Finally, we discuss the potential future research 

directions and provide design guidelines for QKD networks. 

 

Index Terms—Quantum key distribution networks, quantum 

cryptography, quantum communication, security, communication 

networks, next generation networking.  
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I. INTRODUCTION 

NFORMATION systems are widely used in all aspects of 
our daily lives, where a variety of information security issues 

arise and security threats are becoming more and more 
extensive and anabatic. How to ensure the security of 
confidential information transmitted through the Internet has 
become a significant issue that has raised increasingly more 
attention from both academia and industry. Meanwhile, with 
the development of quantum computers [1]–[7], their increased 
computational power threatens conventional cryptosystems. To 
motivate the need for this survey, Table I compares the threats 
imposed on different cryptosystems in the presence of quantum 
computers [8]. Most of the public-key cryptosystems such as 
those proposed by Rivest-Shamir-Adleman (RSA) [9], 
Diffie-Hellman [10], and elliptic curve cryptography (ECC) 
[11], [12] will become insecure once quantum computing 
reached maturity, since their security relying on the integer 
factorization and discrete logarithmic problems can be 
compromised by using Shor’s algorithm [13] in a quantum 
computer. Consequently, there is an urgent need for conceiving 
powerful information security solutions to guard against 

quantum attacks. Such solutions are referred to as 
quantum-safe methods [8].  

At the time of writing, two quantum-safe candidate methods 
have been proposed, namely post-quantum cryptography and 
quantum cryptography. The family of post-quantum 
cryptography [14]–[16] consists of code-based [17], 
hash-based [18], lattice-based [19], and multivariate [20] 
cryptosystems that have been proven safe against the known 
quantum attacks. They have the advantage of being compatible 
with existing cryptographic infrastructures and can reach high 
secret-key rates over relatively long distances. However, their 
security might be broken by hitherto unknown algorithms in the 
future, since they can only be resilient against known quantum 
attacks. By contrast, quantum cryptography [21]–[24] is 
capable of achieving the information-theoretic security1  by 
exploiting the principles of quantum physics, as exemplified by 
the quantum no-cloning theorem [25] and the Heisenberg’s 
uncertainty principle [26]. Its security remains indestructible 
even in the face of future advances in computational power or 
algorithms. Despite the above advances, quantum cryptography 
is unable to replicate all the functions of conventional 
cryptosystems at the time of writing. It is expected to be 
combined with post-quantum cryptography to jointly build the 
infrastructure for future quantum-safe cryptosystems [27]. 

As one of the most successful applications of quantum 
cryptography, quantum key distribution (QKD) [28]–[31] 
promises information-theoretic security [32], [33] based on the 
laws of quantum physics for distributing symmetric secret keys 
between a pair of legitimate parties. These secret keys can then 
be used by symmetric-key cryptosystems for encrypting 
confidential messages to be transferred over a public channel. 
An example of the symmetric-key cryptosystem is the so-called 
one-time pad (OTP) [34], which has been proven by Shannon 
[35] to facilitate information-theoretically secure message 
encryption. Its disadvantage is however that the key has to be at 

 
1Information-theoretic security is often referred to as unconditional security. 

It refers to a cryptosystem that derives its security solely from information 
theory. The cryptosystem is uncrackable even if an adversary has unlimited 
computing power. 

I 

TABLE I 
COMPARISON OF DIFFERENT CRYPTOSYSTEMS IN THE PRESENCE OF 

QUANTUM COMPUTERS 

Cryptosystem Type Impact 

RSA Public-key Insecure 

Diffie-Hellman Public-key Insecure 

ECC Public-key Insecure 

AES Symmetric-key Larger key sizes required 

OTP Symmetric-key Proven secure 

Code-based Post-quantum Not yet broken 

Hash-based Post-quantum Not yet broken 

Lattice-based Post-quantum Not yet broken 

Multivariate Post-quantum Not yet broken 

QKD Quantum Proven secure 
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least as long as the message, which can be encrypted by taking 
their modulo-two addition. By using larger key sizes, other 
symmetric-key cryptosystems such as the advanced encryption 
standard (AES) [36] are also considered to be quantum-safe [8]. 
A pivotal challenge of symmetric-key cryptosystems is that of 
securely sharing the secret key, which can be circumvented by 
QKD. In particular, although quantum computers are in their 
infancy, QKD is still required at the time of writing, because it 
can provide long-term security. For instance, eavesdroppers 
may intercept and store the encrypted messages that they are 
not able to decrypt at the time of capturing them and wait for 
mature quantum computers or algorithms to decrypt these 
messages. Some important information such as government 
secrets that have to be kept confidential for decades will 
substantially benefit from QKD. Thus, QKD technology has 
the promise of becoming the cornerstone of ultimate 
information security.  

A. Motivation  

QKD is also a salient quantum communication technique 
[37]. The basic element of QKD is the QKD transmitter and 
receiver connected via a QKD link, allowing two legitimate 
parties to share the secret keys in a point-to-point manner. In 
recent years, point-to-point QKD has made significant progress 
in terms of its protocols, devices, systems, and so on. For 
example, a variety of QKD protocols and devices have been 
developed for improving the QKD performance quantified in 
terms of its secret-key rate, distance, and security. As a result, 
QKD systems are already commercially available on the market 
[38]–[40].  

However, point-to-point QKD links can only support a few 
pairs of users, which has restricted the popularity of QKD. 
Extending QKD to network settings beyond point-to-point 
allows them to evolve from academic research into a range of 
preliminary applications [41] to offer security for networked 
users instead of point-to-point scenarios, which has the 
potential of protecting industrial and governmental networks 
from security threats.  

Given this motivation, a number of fiber-based QKD 
networks have been deployed in the field, such as the DARPA 
[42], SECOQC [43], Tokyo [44], SwissQuantum [45], 
Beijing-Shanghai [46], and Cambridge [47] QKD networks. 
Furthermore, a satellite-based intercontinental QKD network 
demonstration [48] and an integrated space-to-ground QKD 
network [49] have been reported. More broadly, the QKD 
network can also be used to secure numerous other applications 
in the areas of finance and banking, government and defense, 
cloud and data center, critical infrastructure, healthcare, etc.  

B. Comparison to Existing Surveys 

The QKD network has been regarded as the stepping stone 
for the development of the quantum Internet (Qinternet)2 [50], 
 

2The quantum Internet [50] is a network that interconnects quantum devices 
through quantum channels, which can provide new Internet technologies by 
using quantum communication to enable applications that are out of reach for 
the classical Internet. Qinternet is defined as the abbreviation for Quantum 
Internet in this paper. 

as detailed below and summarized in Table II:  
 Gisin et al. [22] provided an early review of the progress 

in both the theory and experimental investigations of 
QKD. 

 Kimble [51] described several basic principles associated 
with the physical implementation of a Qinternet, such as 
the quantum memories and repeaters required for the 
reliable transportation of quantum states across networks.  

 Scarani et al. [28] focused on the practical aspects of QKD 
and summarized the theoretical tools used for assessing 
the security of experimental platforms.  

 Lo et al. [33] reviewed QKD techniques in terms of their 
security model, experimental progress and challenges, as 
well as quantum hacking and countermeasures. Several 
QKD network implementation examples were also 
described.  

 Alléaume et al. [52] compared QKD to classical key 
distribution techniques and described the generic 
scenarios of using QKD in cryptographic infrastructures, 
where the QKD networks are discussed in a generic 
scenario. 

 Diamanti et al. [53] outlined the principle, security, and 
implementation of distributing secret keys relying on 
continuous valued variables.  

 Diamanti et al. [29] surveyed several practical challenges 
in terms of the attainable secret-key rate, distance, size, 
cost, and practical security in QKD. They also discussed 
the practicalities of building a QKD network.  

 Sasaki [54] discussed how QKD networks could be used 
in existing fiber-based as well as wireless networks.  

 Dür et al. [55] elaborated both on the potential 
applications as well as on the theoretical and experimental 
challenges of implementing the Qinternet. 

 Shenoy-Hejamadi et al. [56] covered the progress of QKD 
and other applications of quantum cryptography, such as 
quantum random number generation and quantum secret 
sharing. 

 Zhang et al. [30] provided a survey of both the challenges 
and solutions conceived for large scale QKD, including 
the security of practical QKD, QKD metropolitan as well 
as backbone networks, and satellite-based QKD.  

 Wehner et al. [50] categorized the different stages of 
developing the Qinternet and outlined the technological 
advances required for reaching these stages.  

 Laudenbach et al. [57] detailed the theoretical foundations 
to be laid down for the practical implementation of 
continuous-variable QKD (CV-QKD) relying on 
idealized Gaussian modulation. 

 Gyongyosi et al. [58] provided a review of QKD protocols 
and their applications in the classical Internet and the 
Qinternet. 

 Kozlowski et al. [59] surveyed the state-of-the-art of 
quantum networks from the perspective of computer 
science and discussed the major challenges to be 
overcome in order to make the Qinternet a reality. 

 Hosseinidehaj et al. [60] outlined the technical advances 
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related to satellite-based continuous-variable quantum 
communications. 

 Cavaliere et al. [61] reviewed quantum communication 
with particular attention to evolving QKD technologies 
from labs to the markets following an industrial 
perspective. 

 Xu et al. [31] reviewed both the theoretical and 
experimental progress in secure QKD relying on realistic 
devices, and they prophesized that numerous QKD 
networks would be deployed in many countries to achieve 
the ultimate goal of a global QKD network.  

 Pirandola et al. [24] provided an overview of research 
advances in the domain of both theoretical and 
experimental QKD.  

 Mehic et al. [62] surveyed several typical QKD networks 
and the challenges of QKD networking in terms of the 
quality of service (QoS), as well as their simulation 
techniques, and software defined networking (SDN) 
approaches. 

These valuable surveys have provided insights into diverse 
perspectives on the family of QKD technologies and the 
Qinternet, but none of them paid attention to the details of QKD 
networks. For example, many of them focused on the enabling 
technologies in the physical layer of QKD networks, with little 
attention paid to the network layer. Thus there is a paucity of 
literature on the details of QKD networks. Again, Table II 

boldly and explicitly compares this survey against the existing 
surveys. More concretely, we cover the details of QKD 
networks, including their current advances and networking 
architecture, their physical and network layer solutions, as well 
as their standardization and applications. To the best of our 
knowledge, this survey is the first one to provide a 
comprehensive up-to-date review of QKD networks. 

C. Contributions 

More specifically, the major contributions of this survey are 
summarized as follows: 

1) We survey the development of practical QKD network 
implementations conceived both for covering short-range 
as well as metropolitan communications, and long-haul 
QKD networks, with special emphasis on the associated 
engineering perspectives. (Section III) 

2) We describe the general QKD network architecture, its 
elements, as well as its interfaces and protocols. (Section 
IV)  

3) We provide an in-depth survey of the QKD network’s 
enabling techniques, highlighting the interactions of the 
physical and network layers. Specifically, the issues of 
physical layer co-fiber transmission, relaying, 
satellite-based QKD, and chip-based QKD technologies 
are discussed. In the network layer we critically appraise 
SDN, key pooling, resource allocation, routing, protection 

TABLE II 
COMPARISON OF THIS SURVEY TO EXISTING SURVEYS 

Reference Year 
QKD 

basics 

Advances 

in QKD 

networks 

QKD 

networking 

architecture 

Enabling techniques 

for QKD networks QKD network 

standardization 

QKD 

network 

applications 

Open 

topics of 

QKD 

networks  

Design 

guidelines 

for QKD 

networks 
Physical  

layer  

Network  

layer  

[22] 2002          

[51] 2008          

[28] 2009          

[33] 2014          

[52] 2014          

[53] 2015          

[29] 2016          

[54] 2017          

[55] 2017          

[56] 2017          

[30] 2018          

[50] 2018          

[57] 2018          

[58] 2019          

[59] 2019          

[60] 2019          

[61] 2020          

[31] 2020          

[24] 2020          

[62] 2020          

This survey           
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and restoration, as well as practical security solutions, cost 
optimization, and multi-user QKD solutions. (Sections V 
and VI) 

4) We outline the standardization efforts related to QKD 
networks and proposals emerging from multiple bodies, 

including the International Telecommunication Union 
(ITU) Telecommunication Standardization Sector 
(ITU-T), the European Telecommunications Standards 
Institute (ETSI), the International Organization for 
Standardization (ISO), the International Electrotechnical 
Commission (IEC), the Internet Engineering Task Force 
(IETF), the Institute of Electrical and Electronics 
Engineers (IEEE), and the Cloud Security Alliance (CSA). 
(Section VII) 

5) We identify a range of detailed application scenarios and 
areas to illustrate how QKD networks can be used for 
securing numerous real-life applications. (Section VIII) 

6) We discuss the open topics of QKD networks for future 
research. (Section IX) 

7) Finally, we conclude by providing tangible design 
guidelines for QKD networks. (Section X) 

D. Paper Organization 

A detailed outline of this survey paper is depicted in Fig. 1. 
The remainder of this paper is organized as follows. Section II 
briefly introduces the QKD basics, while Section III reviews 
the practical development of QKD networks, followed by 
Section IV elaborating on their general architecture. Various 
emerging physical and network layer solutions are surveyed in 
Sections V and VI, respectively, complemented by the QKD 
network standardization efforts outlined in Section VII. 
Beneficial QKD network application scenarios are identified in 
Section VIII , while Section IX provides a range of future 
research directions. Finally, we summarize the design 
guidelines of QKD networks and conclude in Section X.  

II.  QKD BASICS 

In this section, we provide a rudimentary introduction to the 
essential basics of the QKD mechanism, transmission media, 
implementation options and protocols for making this treatise 
self-contained. A much more detailed review of QKD progress 
can be found in [24], [28]–[31], [33]. 

A. QKD Mechanism 

Let us continue by illustrating a pair of conventional 
techniques conceived for achieving information security, as 
shown in Figs. 2(a) and 2(b). A classic cryptographic scheme is 
depicted in Fig. 2(a), in which a pair of legitimate parties 
(called Alice and Bob) use the public-key cryptosystem for key 
distribution and the symmetric-key cryptosystem for message 
encryption. The process of message encryption will transform 
the plaintext into ciphertext. By contrast, as depicted in Fig. 
2(b), Alice and Bob can generate the secret keys directly from 
their common classical channel, and then the secret keys 
generated can be used by the symmetric-key cryptosystem to 
encrypt messages. The scheme in Fig. 2(b) is referred to as a 
physical layer security (PLS)-based cryptographic scheme [63], 
[64].  

A QKD-based cryptographic scheme is illustrated in Fig. 
2(c). Compared to the conventional approaches, the difference 
is that QKD exploits the laws of quantum physics to distribute 

Section I.  Introduction 
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Fig. 1.  Outline of this survey paper. 
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unconditionally secure symmetric secret keys between Alice 
and Bob, whereas the similarity is that the secret keys generated 
can also be used by a symmetric-key cryptosystem for message 
encryption. Generally, the basic elements of a QKD system are 
a transmitter and a receiver as well as a QKD link connecting 
the transmitter and receiver. The combination of the transmitter 
and receiver is commonly referred to as the QKD transceiver. 
The QKD transmitter/receiver encapsulates a set of hardware 
and software components used for QKD within a defined 
secure boundary. The QKD link relies on both a quantum 
channel and a classical channel. The quantum channel is used 
for transmitting quantum signals in which information is 
conveyed by quantum states, such as the polarization of a single 
photon. The classical channel is used to exchange classical 
information for synchronization and key distillation3 between 
Alice and Bob [65], [66]. The unique features of the quantum 
channel as well as the fundamental differences between the 

 
3Key distillation [65], [66] is a bidirectional communication process used to 

send classical information from Alice to Bob or Bob to Alice, which typically 
performs sifting and post-processing. Sifting is used for Alice and Bob to agree 
on a subset of the raw data for subsequent post-processing. Post-processing 
usually includes error correction, verification, and privacy amplification for 
Alice and Bob to agree on a secret key. 

quantum and classical channels have been discussed in [67], 
[68]. If an eavesdropper (called Eve) captures some of the 
quantum states during the passage of single photons through 
the quantum channel, those quantum states will not be used to 
distill secret keys, since they are not received by Bob. Eve can 
then potentially measure those quantum states, but the laws of 
quantum physics guarantee that following measurement or 
observation by Eve the quantum state collapses back into the 
classical domain. Hence, any potential eavesdropping on QKD 
can be detected.  

Once the secret keys have been shared between Alice and 
Bob based on QKD or the conventional approaches shown in 
Fig. 2, they can be used for message encryption. More 
specifically, the secret keys generated can be fed into the 
symmetric-key encryptor and decryptor owned by Alice and 
Bob, respectively. Alice will encrypt the plaintext using the 
secret keys by the symmetric-key cryptosystem, and then 
transmits the ciphertext to Bob through a classical channel. 
Then Bob decrypts the ciphertext and obtains the plaintext. 
Consequently, QKD provides an information-theoretically 
secure way of distributing the symmetric secret keys, whereas 
message encryption can be carried out by the symmetric-key 
cryptosystem in just the same way as before.  

B. QKD Transmission Media 

The QKD links are constituted by the classical and quantum 
channels, both of which can be public, but they must be 
authenticated. The classical channel employed for transmitting 
classical signals can use the same medium as classical data 
communications, which is not detailed here. Compared to 
classical signals, quantum signals are much more vulnerable to 
propagation impairments such as the scattering and loss over 
optical fibers as well as the atmospheric turbulence 
encountered by free-space optical links. Unfortunately they 
cannot be readily amplified, because amplifying the quantum 
signals would require measuring and cloning the quantum 
states, which is contrary to the quantum no-cloning theorem 
[25]. Table III compares the features of current fiber-based 
QKD and free-space QKD schemes. 

1) Optical Fiber: Optical fiber has a low loss and a high 
stability, hence it is more suitable for transmitting quantum 
signals. In recent years, substantial theoretical and 
experimental efforts have been invested into the design of QKD 
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Fig. 2.  Illustration of (a) a classic cryptographic scheme; (b) a PLS-based 
cryptographic scheme; (c) a QKD-based cryptographic scheme.  

TABLE III  
OPTICAL FIBER VS. FREE SPACE FOR QKD 

 Optical fiber Free space 

Stability High Low 

Flexibility Low High 

Maturity High Low 

Cost Low High 

Commercialization Available Unavailable 

Achievable distance 
without relaying 

605 km  
(104.8 dB) [73] 

1,200 km  
(<33 dB) [75] 

Future direction Complement each other towards a global network 
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over optical fibers, substantially improving both the attainable 
distance and the secret-key rate. Experimentally, QKD was 
shown to achieve secret-key rates of 1.2 Mbps over 50.5 km 
using a fiber link [69] and of 6.5 bps over a 405 km fiber link 
[70]. Indeed, in recent demonstrations, the achievable distance 
of the fiber-based QKD scheme has reached ~500 km in [71], 
[72] and ~600 km in [73]. Clearly, QKD systems relying on 
optical fiber are available on the market at the time of writing 
[38]–[40]. In the field, QKD can be implemented based on the 
existing pervasive fiber infrastructure to realize its practical 
deployment at a low cost. However, a grave limitation of 
fiber-based QKD is that it cannot readily pass through certain 
challenging terrains, rivers, etc. Furthermore, the achievable 
point-to-point distance remains limited to a few hundred 
kilometers owing to the absorption and noise of the quantum 
signals during long-distance transmission in optical fibers.  

2) Free Space: Free-space optical links have the advantages 
of wide coverage and high flexibility, since they can be readily 
redirected on demand. Recently, there has been substantial 
progress on the experimental side of QKD over free-space 
optical links. Air-to-ground QKD has been demonstrated 
between an aeroplane and a ground station over a distance of 20 
km in free space [74]. The first quantum satellite, named after 
Micius, has been launched in August 2016, demonstrating the 
feasibility of satellite-to-ground QKD at night between a low 
Earth orbit (LEO) satellite and the ground station over a 
distance of 1,200 km in free space [75]. Furthermore, 
free-space QKD has also been demonstrated over 53 km at 
daylight [76], and the feasibility of an underwater quantum 
channel has been verified in [77]–[80]. In 2020, the first 
experiment of free-space measurement-device-independent 
QKD (MDI-QKD) over a 19.2 km urban atmospheric channel 
was reported in [81]. In [82], the feasibility of air-water QKD 
was experimentally demonstrated. The theoretical upper limit 
for the achievable distance of QKD is influenced by diverse 
factors such as the relay type, the QKD protocol, and 
propagation loss. The relays and QKD protocols will be 
detailed in Sections V-B and II-D, respectively. The 
propagation loss scales exponentially in fibers, while only 
quadratically in free space and it becomes even negligible in 
vacuum above the Earth’s atmosphere [83]. Hence, provided 
that the quantum signals can survive after penetrating the 
Earth’s atmosphere, free-space QKD holds the promise of 
achieving longer distances than fiber-based QKD. However, 
free-space QKD is not as mature as fiber-based QKD, hence 
further studies are needed for advancing free-space QKD from 
experiments to practical environments. It is anticipated that 
QKD over optical fiber and free space will be integrated [49] 
for developing a global QKD network and the Qinternet. 

C. QKD Implementation Options 

QKD implementations rely either on discrete-variable QKD 
(DV-QKD) or on CV-QKD. A number of experiments have 
been performed both in the context of DV-QKD [69]–[76], 
[84]–[87] and CV-QKD [88]–[91], demonstrating the 
feasibility of these two options in practice. Both options tend to 

rely on the so-called prepare-and-measure approach [21], 
[92]–[98] for practical QKD implementations, where the 
quantum states are prepared by Alice and sent to Bob for 
measurement. Another attractive technique is the 
entanglement-based approach [99], [100], where the entangled 
states are prepared externally to Alice and Bob, which is more 
robust to environmental impairments. However, it is 
technologically less mature than the prepare-and-measure 
approach, hence we focus our attention on the 
prepare-and-measure approach in this survey. In this regard, 
the differences between DV-QKD and CV-QKD are briefly 
summarized in Table IV and elaborated on as follows.  

1) DV-QKD: In DV-QKD systems, the information is 
mapped to discrete quantum states, such as the polarization, 
phase, or time bin of a single photon. At the transmitter side, a 
single-photon source is preferred. However, significant 
technological challenges have to be tackled to realize a perfect 
single-photon source. At the current state-of-the-art hence 
weak pulses of laser light are used for approximating the 
single-photon sources. On the receiver side, single-photon 
detectors are utilized. As for the channel model, typically a 
lossy quantum bit (qubit) channel is considered. The achievable 
point-to-point distance of DV-QKD is mainly limited by the 
performance (e.g., detection efficiency) of single-photon 
detectors [101]. 

2) CV-QKD: In CV-QKD systems [60], the information is 
mapped to continuous-valued quantum states, such as the 
quadrature components of the quantized electromagnetic field 
(including coherent states and squeezed states). At the 
transmitter side, a coherent-state source or a squeezed-state 
source is widely used. At the receiver side, homodyne or 
heterodyne detectors are employed. With respect to the channel 
model, a lossy bosonic channel is considered. The achievable 
point-to-point distance of CV-QKD is mainly limited by the 
efficiency of the post-processing techniques used.  

A more detailed description and comparison of DV-QKD 
and CV-QKD can be found in [24], [31], [60]. At the time of 
writing, DV-QKD systems are technologically more mature 
than CV-QKD systems. Hence CV-QKD systems have recently 
attracted more intense research attention and achieved technical 
advances owing to their high grade of compatibility with the 

TABLE IV 
DV-QKD VS. CV-QKD 

 DV-QKD CV-QKD 

Quantum 
state 

Polarization, phase, or 
time bin of a single photon 

Quadrature components of 
quantized electromagnetic field 

Source Single-photon source 
Coherent-state or 
squeezed-state source 

Detector Single-photon detector 
Homodyne or heterodyne 
detector 

Channel 
model 

Lossy qubit channel Lossy bosonic channel 

Distance 
limitation 

Performance of 
single-photon detectors 

Efficiency of post-processing 
techniques 
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existing telecommunication devices [102], [103]. Ultimately, 
hybrid DV-QKD and CV-QKD systems [104], [105] constitute 
flexible design alternatives for further research. 

D. QKD Protocols 

Based on the different QKD implementation options, several 
QKD protocols have been invented. Table V summarizes a 
number of typical QKD protocols, including the seminal 
Bennett-Brassard-1984 (BB84) [21], 
Grosshans-Grangier-2002 (GG02) [92], 
differential-phase-shift (DPS) [93], decoy-state [94]–[96], 
Scarani-Acín-Ribordy-Gisin-2004 (SARG04) [97], 
coherent-one-way (COW) [98], Ekert-91 (E91) [99], 
Bennett-Brassard-Mermin-1992 (BBM92) [100], 
measurement-device-independent (MDI) [106], twin-field (TF) 
[107], and the phase-matching (PM) [108] protocols. A 
comprehensive overview of QKD protocols can be found in 
[24], [28], [31], [33], [53]. Here we briefly introduce three 
typical QKD protocols. 

1) BB84 Protocol: The BB84 protocol is the seminal QKD 
protocol invented by Bennett and Brassard in 1984 [21], which 
may be readily used for DV-QKD. It is still widely used at the 
time of writing, and it is the starting point for developing more 
sophisticated QKD protocols. In the BB84 protocol, five stages 
are performed, as illustrated in Fig. 3 and explained as follows.  

1) Qubit preparation, transmission, and measurement: Alice 
generates a sequence of classical bits (called raw keys) and 
encodes them into a stream of single photons to generate 
qubits. Each single photon possesses one of the four 
polarization states, namely, horizontal (0°), vertical (90°), 
diagonal (+45°), and antidiagonal (−45°) corresponding to 
the classical bits 0, 1, 1, and 0, respectively. The qubits are 
then sent to Bob through a quantum channel. Bob receives 
the incoming qubits and carries out measurement of each 
qubit relying on one of the two conjugate bases, namely 
the rectilinear (+) and diagonal (×) bases. Bob also records 
the measurement bases and results. 

2) Sifting: Alice and Bob, respectively, share their encoding 
and measurement bases through a classical channel, which 

may however be accommodated within a single fiber 
using wavelength-division multiplexing (WDM). The 
specific qubits associated with mismatched polarization 
states and measurement bases are discarded, while the 
remaining qubits corresponding to the matching bases are 
decoded into a stream of bits (called sifted keys). 

3) Parameter estimation: At this stage, the quantum bit error 
rate (QBER) is estimated by sacrificing a portion of the 
sifted keys to verify that it is below a predetermined 
threshold value. Notably, this is not the only option for 
QBER estimation. For example, Alice and Bob can first 
correct the errors, based on which they can more 
accurately specify the QBER without losing part of the 
data. If the estimated QBER is above the threshold value, 
the QKD process will be aborted and restarted from the 
first stage due to potential eavesdropping on the quantum 
channel, which contaminates the quantum states.  

4) Post-processing: Alice and Bob perform error correction, 
verification, and privacy amplification through a classical 
channel to distill the final string of secure bits (called 
secret keys).  

5) Authentication: The first QKD session is authenticated 
using the full pre-shared secret key between Alice and 
Bob. Subsequent QKD sessions can be authenticated 
using a small part of the agreed secret keys to avoid the 
man-in-the-middle attack4 [109].  

A perfect single-photon source is required by the BB84 
protocol, but this is still unavailable in practice. Instead, a 
highly attenuated laser source that can generate weak coherent 
pulses is commonly adopted by the BB84-protocol-based QKD 
systems. Such a laser source may emit multiple photons in a 
pulse, making the QKD system vulnerable to a photon number 
splitting attack5  [110], [111]. Fortunately, the so-called 

 
4The man-in-the-middle attack [109] is a cyberattack where an attacker in 

the middle of Alice and Bob intercepts the message from Alice and sends his 
message to Bob, while both Alice and Bob believe that they are directly 
communicating with each other.  

5The photon number splitting attack [110] is a physical attack in which an 
eavesdropper splits a pulse comprising two or more photons through a physical 
interaction [111] to keep one photon, such that the eavesdropper can then obtain 
the secret-key information relying on the intercepted photons. 

TABLE V 
SUMMARY OF TYPICAL QKD PROTOCOLS 

Protocol Type Approach Year Ref. 

BB84 DV Prepare-and-measure 1984 [21] 

E91 DV Entanglement-based 1991 [99] 

BBM92 DV Entanglement-based 1992 [100] 

GG02 CV Prepare-and-measure 2002 [92] 

DPS DV Prepare-and-measure 2002 [93] 

Decoy-state  DV Prepare-and-measure 2003–2005 [94]–[96] 

SARG04 DV Prepare-and-measure 2004 [97] 

COW DV Prepare-and-measure 2005 [98] 

MDI DV/CV Prepare-and-measure 2012 [106] 

TF DV Prepare-and-measure 2018 [107] 

PM DV Prepare-and-measure 2018 [108] 
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Fig. 3.  Illustration of five stages in the BB84 protocol. 
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decoy-state method [94]–[96] has been proposed for 
overcoming the photon number splitting attack by adding 
decoy states in the BB84 protocol. To elaborate a little further, 
in a decoy-state QKD system, Alice generates some decoy 
states in which the number of photons is different from that in 
the original signal state. Hence there is only one genuine signal 
state and several decoy states represented by multiple intensity 
levels. Alice and Bob can monitor and analyze the statistical 
characteristics of both types of states, where the decoy states 
are used for detecting photon number splitting attacks and the 
genuine signal state is used for producing the secret keys. 
Thanks to the discovery of the decoy-state method, QKD 
becomes practical even with the aid of weak coherent pulses, in 
the absence of perfect single-photon sources at the time of 
writing.  

2) GG02 Protocol: The GG02 protocol was developed by 
Grosshans and Grangier in 2002 [92], which can implement 
Gaussian-modulated CV-QKD relying on coherent states. It is 
one of the most widely used CV-QKD protocols and has been 
adopted in commercial CV-QKD systems [112]. Similar to the 
BB84 protocol, the GG02 protocol also consists of five stages, 
as illustrated in Fig. 4 and described below.  

1) State preparation, transmission, and measurement: Alice 
prepares the coherent state |x + ip, in which x and p are the 
real and imaginary components of the electromagnetic 
field corresponding to the two quadratures of a coherent 
state. The coherent state is sent to Bob through a quantum 
channel. Bob randomly measures one of the two 
quadratures of the coherent state and records which 
measurement he made.  

2) Sifting: Bob informs Alice through a classical channel 
about which quadrature he measured, based on which 
Alice discards the irrelevant data. At this stage, Alice and 
Bob share a set of correlated Gaussian variables (called 
key elements).  

3) Parameter estimation: Alice and Bob reveal a random 
portion of their key elements through the classical channel 
to estimate the transmission efficiency and excess noise of 
the quantum channel. 

4) Post-processing: Even with no eavesdropper present and 

with perfect state preparation as well as measurement, 
errors are typically unavoidable owing to the intrinsic 
quantum noise. The first task in post-processing is the 
discretization of the analogue (continuous) data, which is 
usually performed in conjunction with error reconciliation 
to maximize the efficiency. Error reconciliation is invoked 
for transmission over the classical channel, and then Alice 
and Bob share a string of bits that might be partially 
captured by Eve. Next, a verification step is performed for 
ascertaining that Alice and Bob have identical secret keys. 
Finally, Alice and Bob perform privacy amplification to 
eliminate the information that Eve can obtain, and distill 
the final secret keys.  

5) Authentication: An authentication step (as in the BB84 
protocol) can be implemented to authenticate the QKD 
sessions in order to prevent the man-in-the-middle attack 
[109]. 

3) MDI 6  Protocol: The MDI-QKD protocol was first 
proposed by Lo et al. [106] in 2012 to fill the detection 
loophole (i.e., all detector side channels [31]) in practical QKD 
systems, which allows Alice and Bob to share the secret keys 
via an untrusted relay (called Charlie) located in the middle. As 
shown in Fig. 5, both Alice as well as Bob have a transmitter, 
and they generate as well as transmit quantum signals to 
Charlie. The positions of Alice and Bob are symmetric in 
general. Charlie then performs a Bell state measurement to 
project the incoming quantum signals into a Bell state, and 
publicly announces the measurement results to correlate the 
key information of Alice and Bob. Inspired by this idea, several 
discrete-variable MDI-QKD [113]–[115] and 
continuous-variable MDI-QKD [116]–[118] schemes have 
been invented. Remarkably, novel variants of MDI-QKD 
protocols, such as the TF-QKD [107] and PM-QKD [108] 
protocols, were shown to be capable of overcoming the 
rate-distance limit of conventional MDI-QKD. Meanwhile, 
asymmetric protocols have also been proposed to overcome the 
symmetric channel limitation (i.e., Alice and Bob have 
symmetric distances with similar losses to the untrusted relay) 
of MDI-QKD [119], [120]. The only assumption in MDI-QKD 
is that Alice and Bob trust their sources. Even this assumption 
can be relaxed with the aid of the device-independent QKD 
(DI-QKD) philosophy [121]–[123]. In contrast to the 
MDI-QKD protocol that is feasible to implement in practical 

 
6MDI implies that the security of QKD does not depend on the measurement 

device at the receiver side, that is, the MDI-QKD process remains secure even if 
the measurement device is controlled by an eavesdropper. 
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Fig. 4.  Illustration of five stages in the GG02 protocol. 
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QKD systems, the DI-QKD implementation remains a 
challenge and further advances are needed to make DI-QKD 
more practical [124].   

At the time of writing, already numerous QKD systems have 
been commercialized by using various protocols (e.g., BB84 
and COW) belonging to the prepare-and-measure approach and 
in a pattern in which the QKD transmitter and receiver have a 
one-to-one relationship [38]–[40]. A realistic QKD system is 
constrained by many impairments, such as the fiber type and 
length, wavelength-dependent attenuation, temperature, and 
hacking attacks. Furthermore, the critical parameters are the 
clock rate, secret-key rate, QBER, and key failure probability 
(i.e., the probability that at least one bit of the key is leaked to 
an eavesdropper). These parameters are typically dependent on 
the type of systems based on dissimilar QKD protocols in 
real-world environments. As a new parameter example, a QKD 
system with 1 GHz clock rate implemented by Toshiba can 
achieve a secret-key rate over 1 Mbps at 1550 nm wavelength 
for 10 dB loss (equivalent to 50 km of standard fiber) using an 
efficient BB84 protocol with decoy states, where the QBER is 
less than 5% and the key failure probability is less than 10−10 
[125]. It has been reported to support coexistence with >32×10 
Gb/s data channels, single/dual fiber channel and room 
temperature operation, as well as protection against several 
hacking attacks [40]. As a result, the practicability of QKD 
systems provides a solid foundation for QKD networking in the 
real world. Some of the practical QKD systems are: the 
Cambridge QKD metro network [47] using Toshiba’s QKD 
systems; the Madrid QKD metro network [126] based on 
Huawei’s QKD systems; the Bristol QKD metro network [127] 
and the Cambridge-Ipswich QKD backbone network [128] 
relying on ID Quantique QKD systems; the Hefei QKD metro 

network [129] relying on QuantumCTek QKD systems. These 
networks will be detailed in the next section. 

III.  ADVANCES IN QKD NETWORKS 

The penetration of QKD networks is growing rapidly around 
the world, evolving from testbeds to the field, as depicted in Fig. 
6. In this section, we first give a brief introduction to the 
popular QKD network implementation options. Then, we 
continue with the critical appraisal of QKD networks spanning 
from short-range to metropolitan-coverage and long-haul QKD 
scenarios.  

A. QKD Network Implementation Options 

Based on the specific node functionalities, QKD network 
implementations tend to rely on either optical switching or on 
trusted relays, untrusted relays or alternatively, on quantum 
repeater based solutions. Table VI compares the basic features 

TABLE VI 
COMPARISON OF DIFFERENT QKD NETWORK IMPLEMENTATION OPTIONS 
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Trusted 

relay-based 

Untrusted 

relay-based 

Quantum 

repeater 
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distance 
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Arbitrary 
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long 

Arbitrary 

Scalability 
Relatively 
low 

High 
Relatively 
low 

High 

Applicability Limited Wide Limited Wide 

Security High 
Relatively 
low 

High High 

Maturity High High 
Relatively 
low 

Low 

Field trial Available Available Available Unavailable 
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Fig. 6.  Overview of QKD network testbeds and field trials around the world. 
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of these options. At the time of writing, the optical switching 
and trusted relay schemes are more mature than the untrusted 
relay and quantum repeater based schemes. 

1) Optical Switching Based QKD Networks: In an optical 
switching based QKD network, several classical optical 
functions such as beam splitting and switching can be applied 
to the quantum signals transmitted over a quantum channel for 
connecting a pair of QKD nodes, which can be readily 
implemented using commercial technologies. The quantum 
signals can be transmitted through short quantum links without 
any interaction with untrusted nodes. Hence these short links 
are less prone to eavesdropping than their long-haul 
counterparts. However, they are only suitable for small-scale 
access networks [130] and for relatively small metropolitan 
networks [131], because the attenuation of quantum signals 
cannot be eliminated by amplification. 

2) Trusted Relay Based QKD Networks: In contrast to the 
above short-range scenario, in a trusted relay based QKD 
network (commonly referred to as a trusted-node QKD 
network), local secret keys are produced for each QKD link and 
then stored in the nodes that are located at both ends of each 
QKD link. Long-distance QKD between two end nodes can be 
realized along a chain of concatenated QKD links relying on a 
one-dimensional chain of trusted relays connected by the QKD 
links. The secret keys are forwarded from the source node to 
the destination node in a hop-by-hop manner along the QKD 
path, where the one-time pad technique is used for encryption 
to ensure end-to-end information-theoretic security of the 
secret keys. This QKD network implementation option is 
practical and eminently scalable, hence it has been widely 
adopted for the deployment of QKD networks in the field. It 
should be noted that each trusted relay is assumed to be 
protected against any intrusion or attack. In this paper, the 
commercial feasibility of trusted relays will be discussed in 
Section V-B. However, we have to note in closing that all 

networking protocols, which exploit the idealized simplifying 
assumption that the relays are trusted are inherently less secure 
than their counterparts, which assume that the relays cannot be 
trusted. Hence more robust security protocols must be 
conceived for realistic untrusted relays. 

3) Untrusted Relay Based QKD Networks: In contrast to the 
trusted relay scheme of Table VI that can be used in 
conjunction with any QKD protocols, an untrusted relay based 
QKD network has to rely on more secure QKD protocols such 
as MDI and the family of entanglement-based protocols. An 
untrusted relay relying on the MDI protocol typically has better 
security than a trusted relay based protocol, because it can 
remove all security loopholes at the measurement side. It even 
allows the untrusted relay to be controlled by an eavesdropper 
without affecting the security of QKD. An untrusted relay 
based protocol is also capable of extending the secure distance 
of QKD quite considerably. For example, the attainable 
distance of a stand-alone untrusted relay is limited to ~500 km 
in [72] and ~600 km in [73] using TF-QKD protocols. However, 
the untrusted relay cannot extend QKD to an arbitrary distance, 
since the QKD protocol does not allow the direct connection of 
two untrusted relays. Hence, this QKD network is more 
suitable for limited-range access and metropolitan networks 
[132], while its large-scale extension requires its integration 
with trusted relays. However, this reduces its security level. 

4) Quantum Repeater Based QKD Networks: In the 
quantum repeater based QKD network of Table VI, quantum 
repeaters [51], [133]–[135] are adopted for mitigating the 
distance-dependent impairments imposed on quantum signals. 
A quantum repeater at an intermediate node can create 
long-distance entanglement between the source and destination 
nodes relying on a physical process known as entanglement 
swapping7 [51], [133]–[135]. Explicitly, a quantum repeater is 
expected to decontaminate and forward the quantum signals 
without directly measuring or cloning them. However, such an 
idealized quantum repeater is still unavailable at the time of 
writing, hence long-haul quantum repeater based QKD 
networks are yet to be rolled out in the field. In this paper, the 
progress on quantum repeaters will be outlined in Section V-B. 

To elaborate a little further, a QKD network incorporating 
the above four relaying options is shown in Fig. 7. In addition 
to the QKD transmitter/receiver, a QKD node may incorporate 
the functionality of the optical switch/splitter, and the 
trusted/untrusted relay or the quantum repeater. The secret keys 
are generated between any pair of QKD nodes or trusted relays. 
The position of the trusted relay may be referred to as a 
secret-key relay point. By contrast, the position of the optical 
switch/splitter, and of the untrusted relay or the quantum 
repeater may be referred to as a quantum-signal relay point, 
where no secret keys are generated or relayed. Hence the 
quantum-signal relay point does not have to be trusted. 

 
7Entanglement swapping can extend entanglement distances by splicing two 

Bell pairs spanning short distances between adjacent nodes into one pair over 
the longer distance [51], [133]–[135]. For example, if nodes A and B share a 
Bell pair as well as nodes B and C share another Bell pair, then node B can 
perform entanglement swapping to create a Bell pair between nodes A and C. 

Trusted Relays

Quantum Repeaters

Optical Splitter

Optical Switch

Untrusted Relay

QKD Link

QKD Transmitter/ReceiverQKD Node

QKD Network

 

Fig. 7.  Illustration of a QKD network incorporating the four relaying options. 
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B. Short-Range QKD Networks 

The short-range QKD networks allow multiple users to 
communicate securely, but only in access/local networks.  

1) QKD Access Networks: A QKD access network may 
serve a multitude of end users as a last mile solution by relying 
on point-to-multipoint connections, where the downstream and 
upstream QKD access networks [130] are illustrated in Figs. 
8(a) and 8(b), respectively, which employ optical switching 
based solutions. Observe in Fig. 8(a) that a transmitter is placed 
at the network node and each user has a receiver in the 
downstream QKD access network. By contrast, a receiver is 
located at the network node and each user has a transmitter in 
the upstream QKD access network. A passive optical splitter is 
adopted for directing the quantum signals from a transmitter to 
a receiver based on the unidirectional nature of the QKD 
process. In 1997, Townsend [136] was the first author, who 
reported the implementation of a downstream QKD access 
network relying on a single transmitter and three receivers in 
the lab. In 2013, an upstream QKD access network was 
successfully demonstrated in the lab [130], allowing up to 64 
users to share a single-photon detector at a network node. In 
2011, the futuristic quantum-to-the-home concept has been 
proposed for providing perfect end-to-end security to users 
[137], which may be offered in the near future by the 
Eindhoven QKD network testbed [138]. In this paper, the 
progress on the design of multi-user QKD over access networks 
will be presented in Section VI -H. 

2) QKD Local Networks: In addition to the 
above-mentioned passive optical splitter, other optical 

components such as optical switches can also be used by local 
QKD networks. Tang et al. [139] and Ma et al. [140] reported 
on the demonstration of a local QKD network at the National 
Institute of Standards and Technology (NIST) in 2006 and 
2007, respectively. As shown in Fig. 9, this network contained 
a transmitter and two receivers, where an optical switch was 
used for dynamically switching the QKD connections. 
Specifically, the application of QKD-secured video 
surveillance was demonstrated. In 2019, Ma et al. reported in 
[141] on their plan of building a field testbed on the NIST 
campus, in which the feasibility and compatibility of QKD 
integration with optical fiber networks will be tested. 

C. Metropolitan-Coverage QKD Networks 

Again, a growing number of QKD networks have been 
deployed in the metropolitan-coverage field. They serve as the 
bridge between the access/local network and the backbone/core 
network. Tables VII  and VIII chronologically list and 
summarize the basic features of QKD networks and links 
deployed in various metropolitan areas, respectively. Some 
details of typical QKD metropolitan networks are exemplified 
below.  

1) Boston Metropolitan Network: The DARPA QKD 
network [42], [142] is the world’s first QKD metropolitan 
network deployed in Boston, USA. This network was first 
operated in the Bolt Beranek and Newman (BBN) lab in 
October 2003, and then it was extended to six nodes spanning 
BBN, Harvard University and Boston University in June 2004. 
In 2005, four more nodes were planned to be added in this 
network. Finally, this network evolved to ten nodes and relied 
on optical switches and trusted relays. 

2) Beijing Metropolitan Network: In 2007, Chen et al. [143] 
reported on a wavelength-routing based star-type QKD 
metropolitan network in Beijing, China. The BB84 and the 
decoy-state BB84 [94]–[96] protocols were utilized. This 
network relied on the commercial telecommunication network 
infrastructure, demonstrating the feasibility of integrating QKD 
into existing networks. Based on a four-port QKD router [177] 
designed for this four-node network, passive routing was 
implemented with the aid of WDM techniques. 

3) Vienna Metropolitan Network: The European project 
termed as the secure communication based on quantum 
cryptography (SECOQC) based QKD network [43], 
[144]–[146] is a trusted relay based QKD metropolitan network 
installed in Vienna, Austria. This network contained six nodes 
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Fig. 9.  Illustration of a local QKD network. 
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Fig. 8.  Illustration of (a) downstream and (b) upstream QKD access networks. 
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connected by eight QKD links (including seven optical fiber 
links and a free space link), which was put into operation in 
2008. Multiple QKD protocols were adopted in this network, 
including several DV-QKD protocols (e.g., BB84, SARG04, 
decoy-state BB84, COW, and BBM92) and a CV-QKD 
protocol. Diverse applications, including OTP-encrypted 
telephone conversations, AES-encrypted video conferencing, 
and traffic rerouting required by heavy tele-traffic have been 
demonstrated in this network. 

4) Geneva Metropolitan Network: The SwissQuantum 
QKD network [45] was installed in Geneva, Switzerland and 
operated over the period spanning from March 2009 to January 
2011. This network consisted of three nodes and three QKD 
fiber links relying on trusted relays. Only the SARG04 protocol 
was used for QKD and commercial devices were applied in this 
network. The reliability and robustness of this network have 
been tested and verified in a realistic environment, 
demonstrating that QKD can be integrated into complex 
network infrastructures.  

5) Tokyo Metropolitan Network: The Tokyo QKD network 
[44] was operated in 2010, which was composed of six trusted 
QKD nodes connected by six optical fiber links. Four different 
QKD protocols were utilized in this network, namely the 
decoy-state BB84, BBM92, DPS, and SARG04. A common 
application interface was developed for supporting the 
interoperability of the different QKD systems. The applications 
supported by this network included secure video conferencing 
and a secure mobile phone.  

6) Hefei Metropolitan Network: In 2008, Chen et al. [147] 
portrayed a three-node trusted relay based QKD network in 
Hefei, China, in which the decoy-state BB84 protocol and a 
commercial optical fiber link were utilized. OTP-encrypted 
real-time audio communication was realized. In 2016, Tang et 

al. [132] reported on the field trial of a MDI-QKD metropolitan 
network in Hefei city, as shown in Fig. 10. This network has a 
star-type topology with four nodes, including an untrusted relay 
and three QKD nodes, which are connected by optical fiber 
links, demonstrating that the MDI-QKD scheme is eminently 

TABLE VII 
SUMMARY OF THE BASIC FEATURES OF DIFFERENT QKD NETWORKS DEPLOYED IN VARIOUS METROPOLITAN AREAS 

Metropolitan 

area 

Optical 

switching 

Trusted 

relay 

Number 

of nodes 
Link type 

Longest link  Maximum 

secret-key 

rate 

QKD 

type 
Year Reference 

Length Loss 

Boston   10 
Optical fiber 
Free space 

29.8 km 16.6 dB 10 kbps DV 2004 [42], [142] 

Beijing   4 Optical fiber 42.6 km 16.4 dB N/A DV 2007 [143] 

Vienna   6 
Optical fiber 
Free space 

85 km 20.4 dB 17 kbps 
DV 
CV 

2008 [43], [144]–[146] 

Hefei   3 Optical fiber 20 km 5.6 dB 1.6 kbps DV 2008 [147] 

Geneva   3 Optical fiber 17.1 km –5.3 dB 2.4 kbps DV 2009 [45] 

Durban   4 Optical fiber 27 km N/A 891 bps DV 2009 [148] 

Wuhu   7 Optical fiber 10 km 6.23 dB 2.53 kbps DV 2009 [149] 

Hefei   5 Optical fiber 60 km 17 dB 4.5 kbps DV 2009 [150] 

Madrid   3 Optical fiber N/A N/A N/A DV 2009 [151] 

Wuhu   5 Optical fiber N/A 14.77 dB 4.91 kbps DV 2010 [152] 

Tokyo   6 Optical fiber 90 km 27 dB 304 kbps DV 2010 [44] 

Hefei   46 Optical fiber N/A N/A N/A DV 2012 [46], [153] 

Columbus   4 Optical fiber N/A N/A N/A DV 2013 [154], [155] 

Jinan   56 Optical fiber N/A N/A N/A DV 2013 [30], [46], [153] 

Madrid   3 Optical fiber 16 km 5.12 dB N/A DV 2014 [156] 

Hefei   4 Optical fiber 55 km 17.3 dB 38.8 bps DV 2016 [132] 

Shanghai   4 Optical fiber 19.92 km 15.1 dB 10 kbps CV 2016 [157] 

Kazan   4 Optical fiber 12.4 km 6.8 dB 19.6 kbps DV 2016 [158] 

South Korea   5 Optical fiber 107 km N/A N/A DV 2016 [159], [160] 

Moscow   3 Optical fiber 30 km 13 dB 0.1 kbps DV 2017 [161] 

Wuhan   >60 Optical fiber N/A N/A N/A DV 2017 [162] 

Madrid   3 Optical fiber 26.4 km 11 dB 70 kbps CV 2018 [126], [163] 

Bristol   4 Optical fiber 2.7 km N/A 3.17 kbps DV 2019 [127] 

Cambridge   3 Optical fiber 10.6 km 3.9 dB 2.58 Mbps DV 2019 [47] 

Madrid   11 Optical fiber 55 km 12 dB N/A CV 2020 [164] 

Bristol   8 Optical fiber 16.9 km 29 dB 83.9 kbps DV 2020 [165] 

Hefei   46 Optical fiber 18 km N/A 60.5 kbps DV 2021 [129] 
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suitable for the construction of a QKD network using untrusted 
relays. In reality, MDI-QKD networks still need extensive 
development before they are mature enough to be widely 
deployed. 

7) Madrid Metropolitan Network: In 2018, Martin et al. 
[126] reported on the field trial of a SDN-enabled QKD 
network in the metropolitan area of Madrid, which is shown in 
Fig. 11. This network connected three different sites using 
CV-QKD. The flexibility of this network was enhanced with 
the aid of an SDN technique [163], and the co-propagation of 
quantum and classical signals in the same optical fiber was 
demonstrated in [178]. In this paper, the issues of co-fiber 
transmission and SDN aided QKD networking will be 
discussed in Sections V-A and VI-A, respectively.  

8) Shanghai Metropolitan Network: In 2016, Huang et al. 
[157] described the field trial of a full-mesh CV-QKD 
metropolitan network in Shanghai, China. A CV-QKD protocol 

based on Gaussian-modulated coherent states [179] was 
applied. This network is composed of four nodes connected by 
six QKD links using commercial optical fibers, which can 
provide all-to-all interconnections without the use of optical 
switching or trusted relays. In this network, classical and 
quantum signals coexist in the same fiber using the WDM 
technique, demonstrating the feasibility of deploying CV-QKD 
in a practical telecommunication environment. 

9) Cambridge Metropolitan Network: In 2019, Dynes et al. 
[47] reported on the field trial of a three-node ring-type QKD 
metropolitan network in Cambridge, UK, as illustrated in Fig. 
12. This network relied on DV-QKD and on an efficient 
version of the BB84 protocol using decoy states [125]. The 
quantum and classical channels were multiplexed in the same 
fiber with the aid of dense wavelength-division multiplexing 
(DWDM). Based on a long period of testing, the secret keys 
were shown to be produced at high rates of 2–3 Mbps on each 
QKD link, which can be used for AES-encrypted data 

TABLE VIII 
SUMMARY OF THE BASIC FEATURES OF DIFFERENT QKD LINKS DEPLOYED IN VARIOUS METROPOLITAN AREAS 

Metropolitan 

area 
Node location 

Number 

of nodes 
Link type Link length Link loss 

Secret-key 

rate 

QKD 

type 
Year Reference 

Intercity Beijing, Tianjin 2 Optical fiber 125 km 26 dB N/A DV 2005 [166] 

Washington Two sites in Washington 2 Optical fiber 25 km 9 dB 1.09 kbps DV 2006 [167], [168] 

Durban Two sites in Durban 2 Optical fiber 2.8 km 2.1 dB N/A DV 2010 [169] 

Paris Massy, Palaiseau 2 Optical fiber 17.7 km 5.6 dB 600 bps CV 2010 [170] 

Calgary Three sites in Calgary 3 Optical fiber 18.6 km 9 dB N/A DV 2013 [171] 

Tokyo Koganei, Otemachi 2 Optical fiber 90 km 30 dB 1.1 kbps DV 2013 [172] 

Hefei Three sites in Hefei 3 Optical fiber 30 km 9.2 dB 16.9 bps DV 2014 [173] 

Tokyo Otemachi, Koganei 2 Optical fiber 45 km  14.5 dB 301 kbps DV 2015 [174] 

South Korea Seongsu, Bundang 2 Optical fiber 35 km N/A N/A DV 2016 [159], [160] 

Intercity Cambridge, Lexington 2 Optical fiber 43 km 16.4 dB 157 kbps DV 2018 [175] 

Xi’an Two sites in Xi’an 2 Optical fiber 30.02 km 12.48 dB 7.57 kbps CV 2019 [91] 

Guangzhou Two sites in Guangzhou 2 Optical fiber 49.85 km 11.62 dB 7.43 kbps CV 2019 [91] 

Florence Two sites in Florence 2 Optical fiber 40 km 21 dB 4.53 kbps DV 2019 [176] 
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Fig. 10.  Il lustration of a MDI-QKD metropolitan network in Hefei [132]. 
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Fig. 11.  Illustration of a SDN-enabled CV-QKD metropolitan network in 
Madrid [126], [163]. 
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transmission.  
10) Bristol Metropolitan Network: In 2019, Tessinari et al. 

[127] reported on the field trial of a fully meshed metropolitan 
network relying on dynamic QKD networking capabilities 
across four nodes in Bristol, UK. Again, the coexistence of 
quantum and classical channels in the same fiber was 
demonstrated. In particular, the SDN technique was utilized for 
supporting dynamic quantum/classical switching and for 
providing QKD-secured connectivity. In 2020, Joshi et al. [165] 
demonstrated a fully connected QKD network without trusted 
nodes in Bristol. Specifically, an entanglement-based QKD 
protocol, namely the BBM92 protocol, was utilized to support 
secure connections between the 28 different pairs of eight users. 
Hence, the feasibility of entanglement-based QKD networking 
was demonstrated. 

11) Xi’an/Guangzhou Metropolitan Link: In 2019, Zhang 
et al. [91] reported two different field tests of their metropolitan 
CV-QKD fiber link in Xi’an and Guangzhou, China, as 
illustrated in Figs. 13(a) and 13(b), respectively. The fiber 
lengths of these field tests in Xi’an and Guangzhou were 30.02 
km and 49.85 km, respectively, where the maximum secret-key 

rates of 7.57 kbps and 7.43 kbps were achieved.  
Finally, the secret-key rate versus distance (link length) for 

the above-mentioned QKD networks/links deployed in various 
metropolitan areas is briefly summarized in Fig. 14. The 
distance (link length) is not representative of the fiber loss, 
since the fiber loss is not only affected by the fiber length, but 
also relies on the fiber type. It can be seen in Fig. 14 that the 
secret-key rate of QKD networks is typically at the kbps level 
within ~100 km of realistic metropolitan areas at the time of 
writing. Furthermore, it is anticipated that metropolitan QKD 
would evolve towards high-speed, long-distance, low-cost and 
multi-protocol networking. 

D. Long-Haul QKD Networks 

With the advent of trusted relays, long-haul QKD networks 
have been implemented in practice, which tend to rely on 
backbone/core networks. The basic features of long-haul QKD 
networks demonstrated in different locations across the globe 
are summarized in Table IX and described as follows.  

1) Hefei-Chaohu-Wuhu QKD Network: Wang et al. [180] 
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Fig. 12.  Illustration of a DV-QKD metropolitan network in Cambridge [47]. 

QKD Node 1 

(HSJG) 

QKD Node 2 

(HJL) 

30.02 km (12.48 dB)

 
(a) 

QKD Node 1 

(FC) 

QKD Node 2 

(QHD) 

49.85 km (11.62 dB)

 
(b) 

Fig. 13.  Illustration of two different CV-QKD metropolitan links in (a) Xi’an 
and (b) Guangzhou [91].  
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reported on the deployment of the Hefei-Chaohu-Wuhu QKD 
network across these three cities in China. This wide area 
network was operational from December 2011 to July 2012, 
which contained nine nodes connecting two metropolitan QKD 
networks in Hefei and Wuhu cities with the total fiber length of 
199 km. The decoy-state BB84 protocol was implemented for 
QKD. The applications of OTP-encrypted public switch 
telephone conversations and AES-encrypted virtual private 
network (VPN) functions were demonstrated over this 
network. 

2) Beijing-Shanghai QKD Network: This QKD network 
[46], [181] is a trusted relay based backbone network, which is 
illustrated in Fig. 15. This network consists of 32 nodes 
connected by 31 fiber links, which connects four QKD 
metropolitan networks in the cities of Beijing, Jinan, Hefei, and 
Shanghai with its total length exceeding 2,000 km. The 
deployment of this network was initiated in June 2013 and it 

was completed in December 2016. After long-term 
performance tests and evaluation, this network has been in 
operation since August 2017. Numerous real-world 
applications in the fields of finance and government have been 
secured by using this network. 

3) China-Austria QKD Network: In 2018, Liao et al. [48] 
reported on the experimental demonstration of a satellite-based 
intercontinental QKD network. As shown in Fig. 16, this 
network used the Micius satellite [75] as a trusted relay 
connecting the ground station in Xinglong, China and that in 
Graz, Austria spanning a total distance of 7,600 km. Again, the 
decoy-state BB84 protocol was utilized in the QKD system. 
Specifically, this network was combined with metropolitan 
QKD networks to support an AES-encrypted intercontinental 
video conference. The demonstration of this network clearly 
indicates the feasibility of a global QKD network. In this paper, 
a detailed overview of satellite-based QKD will be provided in 
Section V-C. 

4) Cambridge-Ipswich QKD Network: In 2019, a trusted 
relay based QKD backbone network was launched between 
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Fig. 15.  Illustration of the Beijing-Shanghai QKD backbone network [46]. 
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Fig. 16.  Illustration of the satellite-based intercontinental QKD network 
between China and Austria [48]. 

TABLE IX 
SUMMARY OF THE BASIC FEATURES OF LONG-HAUL QKD NETWORKS DEMONSTRATED IN DIFFERENT LOCATIONS 

Long-haul network 
Trusted 

relay 

Number 

of nodes 

Number 

of links 
Link type Link span 

QKD 

type 
Year Reference Remark 

Hefei-Chaohu-Wuhu  9 8 Optical fiber 199 km DV 2011 [180] Long-term demonstration 

Beijing-Shanghai  32 31 Optical fiber 2,000 km DV 2017 [46], [181] 
Ultra-long QKD network 
Real-world applications 

Zhucheng-Huangshan  2 1 Optical fiber 66 km DV 2018 [182] 
QKD integration with a 
commercial backbone network 

Wuhan-Hefei  11 10 Optical fiber 609 km DV 2018 [183] Real-world applications 

China-Austria  3 2 Free space 7,600 km DV 2018 [48] 
First satellite-relayed 
intercontinental QKD network 

Cambridge-Ipswich  5 4 Optical fiber 121 km DV 2019 [128] 
Co-fiber transmission of 
quantum and classical traffic  

Integrated Space-to- 
Ground (China) 

 Multiple >702 
Optical fiber 
Free space 

4,600 km DV 2021 [49] 
Large-scale integrated 
space-to-ground QKD network 

Jinan-Qingdao  3 2 Optical fiber 511 km DV 2021 [184] Field deployment of TF-QKD 
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Cambridge and Ipswich, UK [128], which is composed of five 
nodes and four links, where the quantum and classical signals 
are transmitted over the same fiber with the total length of 121 
km. 

5) Integrated Space-to-Ground QKD Network: In 2021, 
Chen et al. [49] reported on the construction of an integrated 
space-to-ground QKD network in China, covering more than 
700 QKD fiber links and two satellite-to-ground free-space 
links. This network contains the Beijing-Shanghai QKD 
network, four metropolitan QKD networks deployed in Beijing, 
Jinan, Hefei and Shanghai, as well as two satellite-ground QKD 
links connecting the ground stations in Xinglong and Nanshan. 
Long-term stability and security tests of this network have been 
carried out, where its applications in diverse fields such as 
governments, finance and energy have been demonstrated. 

6) Nationwide QKD Network Construction Initiatives: 
Nationwide QKD networks are currently being deployed or 
planned in many countries. In China, five-horizontal and 
six-vertical QKD trunk lines were planned to be constructed 
during 2017 to 2025, along with more quantum communication 
satellites to be launched to constitute a global satellite-based 
QKD network [181], [185]. In the USA, a QKD backbone 
network is being deployed relying on 800 km optical fiber 
spanning from Boston to Washington, DC [186], while a 
nationwide QKD network was planned to stretch from Boston 
to Georgia, and eventually reaching California [187]. In the UK, 

a QKD network spanning Cambridge-London-Bristol was 
planned and has been tested in the laboratory [188], [189]. In 
Europe, a quantum communication infrastructure based on 
integrated terrestrial-satellite QKD networks launched by the 
OpenQKD project [190] is being explored for employment 
across the European Union. In Russia, a 7,000-km quantum 
network has been scheduled to be constructed by 2024, with 
one of the first pilot projects exploring a QKD backbone 
network connecting Moscow and St. Petersburg with a total 
length of 700 km [191], [192]. In South Korea, the different 
phases of building a nationwide QKD network have been 
discussed in [193]. In Japan, a large-scale network that can 
accommodate over 100 quantum cryptographic devices and 
10,000 users is projected to be developed by 2024 [194], [195]. 
Moreover, a number of satellite-based quantum initiatives [196] 
have been announced around the world. In June 2021, seven 
countries, including UK, USA, Japan, Canada, Italy, Belgium 
and Austria, announced their collaborations for developing a 
satellite-based quantum encryption network [197]. 

IV.  QKD NETWORKING ARCHITECTURE 

Let us now continue by surveying the QKD network 
architectures, elements, as well as interfaces and protocols. 
Given that the untrusted relay and quantum repeater based 
QKD networks are still immature for practical use, the focus of 
this section is on networks based on optical switching and 

TABLE X 
SUMMARY OF BENEFICIAL LAYERED NETWORK ARCHITECTURES SUPPORTING QKD 

Architecture Feature (from bottom to top layers) Manner Year Ref. Remark 

Three-layer  
architecture 

Quantum layer, Secret’s layer, Data layer Field trial 2008 [43] SECOQC QKD network 

Quantum layer, Key management layer, Application layer Field trial 2009 [45] SwissQuantum QKD network 

Quantum layer, Key management layer, Communication layer Field trial 2010 [44] Tokyo QKD network  

Quantum layer, Key management layer, Application layer Field trial 2010 [170] Paris QKD link 

Physical layer, Quantum key management layer, Application 
layer 

Experiment 2013 [198] 
Network-centric quantum 
communication 

Infrastructure layer, Control and management layer, 
Application layer 

Theory 2016 [199] Quantum-aware SDN 

Quantum layer, Network key delivery layer, Application layer Field trial 2019 [47] Cambridge QKD network  

QKD layer, Control layer, Application layer Theory 2019 [200] SDN-based QKD network 

Infrastructure layer, Control layer, Application layer Experiment 2019 [201] SDN-based QKD network 

QKD layer, Control layer, Application layer Experiment 2019 [202] SDN-based QKD network 

Four-layer  
architecture 

Data layer, Key generation layer, Connection layer, Key 
management layer  

Experiment 2009 [203] QKD integrated optical network 

Optical layer, QKD layer, Control layer, Application layer Theory 2017 [204] QKD integrated optical network 

Data layer, QKD layer, Control layer, Application layer Theory 2017 [205] QKD integrated optical network 

Quantum layer, Key management layer, Key supply layer, 
Application layer 

Experiment 2017 [206] QKD network 

Data layer, QKD layer, Control layer, Application layer Theory 2018 [207] QKD integrated optical network 

Optical layer, QKD layer, Control layer, Application layer Theory 2019 [208] QKD integrated optical network 

Five-layer  
architecture 

Quantum physical layer, Quantum logical layer, Classical 
physical layer, Classical logical layer, Application layer 

Field trial 2021 [49] 
Integrated space-to-ground 
QKD network 

Six-layer  
architecture 

Quantum layer, Key management layer, QKD network control 
layer, QKD network management layer, Service layer, User 
network management layer 

Recommendation 2019 [65] QKD network and user network 
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trusted relaying techniques.  

A. General Architecture of QKD Networks 

A QKD network is inseparable from the classical network, 
since it also requires an authenticated classical network (e.g., an 
optical network) and multiple secure cryptographic 
applications in a classical network. As seen in Section III , QKD 
networks have now found preliminary applications in the 
existing communication and secure infrastructures. 
Furthermore, beneficial layered network architectures 
supporting QKD have also been proposed, which are 
summarized in Table X. The proposed architectures have 
different number of layers depending on their specific 
definitions and applications, such as the three-layer architecture 
of [43]–[45], [47], [170], [198]–[202], the four-layer 
architecture of [203]–[208], the five-layer architecture of [49] 
and the six-layer architecture of [65].  

To elaborate a little further, the conceptual structures of a 
QKD network and a user network have been illustrated in the 
ITU-T Y.3800 recommendation [65]. Given the diversity of the 
proposed network architectures supporting QKD, we illustrate 
a general three-layer architecture of QKD networks from a 
holistic view based on the six-layer network architecture 
illustrated in [65]. As depicted in Fig. 17, this architecture 
consists of three logical layers: 1) the infrastructure layer; 2) the 
control and management layer; 3) the application layer. The 
three logical layers of this architecture are detailed next, along 
with the QKD network elements and devices as well as 
interfaces depicted in Fig. 17. 

1) Infrastructure Layer: This layer of Fig. 17 is constituted 
by the QKD network infrastructure, which consists of various 
physical devices [65] conceived for QKD networking. The 
physical devices found in the same location are installed in a 
secure and reliable node for protecting them against physical 
attacks. Such a node is referred to as a QKD node. Based on the 
diverse QKD network implementation options described in 
Section III-A, the specific physical devices can be different, as 

it will be detailed in the next sub-section. The pairs of QKD 
nodes may be interconnected either by optical fiber or by 
free-space links, where each pair of QKD nodes can generate 
symmetric random bit strings as secret keys. Hence the QKD 
protocols or physical devices developed independently by 
different vendors may be adopted [43], [44]. The secret keys 
generated will then be readily stored in the QKD nodes [65], 
since the secret keys are composed of classical bit strings. Each 
QKD node holds its detailed secret-key parameters, such as the 
so-called identifier, size, rate, and type of secret keys, as well as 
the physical device identifier and time stamp of generating and 
storing secret keys [206]. Each QKD node also stores the link 
parameters, such as the length and type of links, and the error 
rate of quantum channels. 

2) Control and Management Layer: This layer of Fig. 17 is 
constituted by the QKD network controller and manager [65], 
where all the QKD nodes are controlled by the QKD network 
controller, which activates, de-activates, and calibrates the 
QKD nodes. By contrast, the QKD network manager monitors 
and manages the QKD network as a whole. It monitors the 
status of all the QKD nodes and links (e.g., obtaining the 
real-time secret-key parameters and link parameters from the 
QKD nodes), and supervises the QKD network controller. The 
statistical data obtained through monitoring and management 
can be collected at a certain relative frequency, and then be 
registered and updated in a database. In particular, the real 
secret keys stored in the QKD nodes will not be delivered 
across different physical locations and cannot be accessed by 
the QKD network controller or manager [200], [201], thereby 
the security of secret keys is still guaranteed after the addition 
of the control and management layer.  

3) Application Layer: This layer of Fig. 17 is constituted by 
the cryptographic applications required by the users. The 
simple workflow of service provision for cryptographic 
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Fig. 17.  General architecture of QKD networks. 
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applications in a QKD network is illustrated in Fig. 18. First, 
cryptographic applications inform the QKD network manager 
of their security requests, such as secret-key request, including 
the secret-key size, rate, updating period, and so on. According 
to these requests, the QKD network manager queries the 
availability of secret keys required from the corresponding 
QKD nodes. If the real-time secret keys are available for 
supporting the cryptographic applications, the QKD network 
manager instructs the QKD network controller to notify the 
corresponding QKD nodes to supply secret keys for the 
cryptographic applications in an appropriate format. Otherwise, 
the cryptographic applications should wait for secret-key 
replenishment. Finally, the transmission of data over the 
application link can be encrypted using the secret keys. In 
particular, each cryptographic application uses the secret keys 
at its own responsibility, once the secret keys have been 
supplied to it, while the QKD nodes and QKD network 
manager have no responsibility concerning those secret keys 
afterward. The number of users that each QKD network/system 
can accommodate is determined by the available secret-key 
resources in the QKD network/system and the secret-key 
requirements of the users. Hence, there is a trade-off between 
the secret-key resources and user requirements. As an example, 
the Cambridge QKD metro network [47] with 2.5 Mbps of 
secret-key resources on each QKD link can support tens of 
thousands of users with a secret-key requirement of >1 kbps per 
user. 

B. QKD Network Elements  

Based on the general architecture of QKD networks shown 
in Fig. 17, the associated QKD network elements are elaborated 
on next. 

1) QKD Node: In a heterogeneous QKD network 
constituted by diverse network segments of different sizes, the 
QKD nodes may be classified as backbone node and access 
node [144], [146], [149], [156], [180]. By contrast, for a QKD 
network based on trusted relays or untrusted relays, the QKD 
nodes may be constituted by user nodes and relay nodes [132], 
[150], [201]. Each QKD node of Fig. 17 consists of various 
physical devices, depending on the specific networking 
requirements. As illustrated in Fig. 19, some of the pivotal 
physical devices are described as follows. 
 QKD transmitter/receiver (transceiver): A pair of QKD 

devices such as a transmitter and a receiver can generate 
the local secret keys, which are forwarded to their 
respectively connected key managers [65]. Some of the 
QKD transceivers commercially available on the market 
at the time of writing are mentioned in [38]–[40]. 
Generally, a QKD node contains one or more QKD 
transceivers. 

 Key manager: The key manager is a distributed server 
used for managing the secret keys generated by QKD 
transceivers and for providing the secret keys to 
cryptographic applications [44], [45], [65], [209]. A QKD 
node usually contains a single key manager, which is 
connected to all QKD transceivers in the same QKD node, 

and receives as well as stores secret keys generated by the 
QKD transceivers. It can perform secret-key relaying to 
enable the generation of global secret keys between any 
pair of QKD nodes in an end-to-end manner, and it is 
capable of supplying secret keys for diverse cryptographic 
applications. The key manager looks after the secret keys 
from the instant of their generation by QKD transceivers 
to their employment by cryptographic applications.  

 Optical switch: The optical switch is a device facilitating 
the connection of a quantum channel from a transmitter to 
any receiver or from a receiver to any transmitter within a 
limited distance. It can realize the time-division 
multiplexing (TDM) of quantum channels and the 
time-sharing of QKD devices [131], [139], [140], [210], 
as well  as facilitate the node bypass [211]. Naturally, the 
frequency band of an optical switch has to cover the entire 
frequency band of quantum channels. 

 Multiplexer/demultiplexer: The multiplexer/demultiplexer 
is used for bundling and separating multiple channels such 
as quantum and classical channels. There are multiple 
types of multiplexers/demultiplexers for different 
multiplexing techniques such as WDM and TDM. 
Additionally, M wavelength-division multiplexers can be 
used to form an M-port QKD router [143], [177]. 

 Secure infrastructure: The secure infrastructure is utilized 
for providing effective safeguards for QKD nodes to 
guarantee that they can operate reliably. 

2) QKD Link: The QKD link of Fig. 17 is used for 
connecting a transmitter and receiver pair, which usually 
consists of a quantum channel for quantum state transmission, 
and a classical channel for synchronization and key distillation 
[65], [66]. The quantum and classical channels do not have to 
be physically bundled. The QKD link can be implemented over 
optical fiber or as a free space optical link. 

3) Key Manager Link: The key manager link of Fig. 17 
involves a classical channel connecting several key managers 
to perform secret-key management such as secret-key relaying, 
which can be implemented either over optical fiber or free 
space.  

4) QKD Network Controller: The QKD network controller 
of Fig. 17 is generally a centralized server used for 
orchestrating the operation of all the QKD nodes in a QKD 
network infrastructure, which includes the activation, 
de-activation, and calibration of the QKD nodes. It performs 
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several network control functions, such as QKD connection 
control (including node access control and node authentication), 
routing control (including routing for secret-key relaying and 
rerouting for failure recovery), and QoS control (including 
QoS-differentiated customization and end-to-end QoS 
assurance) [212].  

5) QKD Network Manager: The QKD network manager 
seen in Fig. 17 is a centralized server used for monitoring and 
managing the QKD network, including all the QKD nodes and 
QKD links as well as key manager links, which also supervises 
the QKD network controller. It performs fault, configuration, 
accounting, performance and security management of the QKD 
network. The QKD network manager differs from the QKD 
network controller mainly in that it performs typical network 
management functions and instructs the QKD network 
controller based on the secret-key requests received. This is 
arranged without directly providing specific control policies 
and functions, such that diverse network environments and 
requirements cannot be seamlessly accommodated by a 
separate QKD network manager. 

6) Cryptographic Application: The cryptographic 
application seen at the top layer of Fig. 17 is a user that has a 
specific security request, such as secret-key request (including 
secret-key size, rate, and updating period). A cryptographic 
application usually has to be in the same physical location as a 
QKD node to receive the secret keys. 

7) Application Link: The application link seen at the top 
layer of Fig. 17 is a classical channel used for exchanging the 
encrypted data between two cryptographic applications.   

C. QKD Network Interfaces and Protocols 

As shown in Fig. 17, there are several interfaces (including 
management, control, and application interfaces) connecting 
the different layers in the general architecture of QKD 
networks. Here we describe the QKD network interfaces and 
discuss several typical protocols supporting these interfaces. 
The internal interfaces within each QKD network element or 
device are beyond the scope of this paper, some of which can be 
found in [213]. Table XI briefly summarizes the QKD network 
interfaces and protocols. Given the wide diversity of QKD 
network protocols, they do not necessarily comply with those 

discussed below.  
1) Management Interface and Protocol: The management 

interfaces of Fig. 17 in a QKD network involve those related to 
the QKD nodes, to the QKD network controller, and to the 
cryptographic applications. By using the management interface 
conceived for QKD nodes, the QKD network manager 
communicates with all QKD nodes in the infrastructure layer. 
The QKD nodes can report their detailed information to the 
QKD network manager, which involves all the relevant 
information concerning the status of devices, boards, ports, 
modules, software, resources, links, and so on. Furthermore, 
the QKD network manager may request information related to 
the secret keys, to the relaying process, and to the routing from 
the QKD nodes. By using the management interface dedicated 
to the QKD network controller, the QKD network manager 
supervises the QKD network controller. By employing the 
management interface provided for cryptographic applications, 
the QKD network manager communicates with the associated 
cryptographic applications in the application layer, which can 
collect multiple security requests from the cryptographic 
applications. 

A management interface can be implemented by the simple 
network management protocol (SNMP) of [214], [215], which 
has been widely used for network management as well as 
monitoring, and can be used for collecting information about 
the managed network elements and devices of a QKD network. 
For example, the information concerning the devices, boards, 
ports, modules, software, resources, and links from QKD nodes 
as well as the information related to multiple security requests 
arriving from cryptographic applications can be collected via 
the SNMP. The reporting of alarms and notification of events 
as well as any queries concerning secret-key information can 
also be implemented using the SNMP. Furthermore, in order to 
support the interoperability of the QKD network elements and 
devices developed by different companies, the common object 
request broker architecture (CORBA) of [216] can be utilized 
for harmonizing the heterogeneous network elements and 
devices of a multi-vendor or multi-domain QKD network. The 
SNMP and CORBA have been utilized in commercial systems 
for QKD networking [38], [39]. 

2) Control Interface and Protocol: The QKD network 
controller communicates with all QKD nodes in the 
infrastructure layer via the control interface of Fig. 17. By 
using this interface, the QKD network controller exchanges 
control and configuration messages with the QKD nodes in 
order to implement several control functions, such as QKD 
connection control, routing control, and QoS control.  

The SDN controller may serve as the QKD network 
controller, as it has been demonstrated in practical QKD 
networks [126], [127], [163]. In particular, the QKD control 
interface provided via SDN is specified in the ETSI GS QKD 
015 [217] and the recommendation ITU-T Y.3805 [218]. The 
OpenFlow of [219] and NETCONF of [220] constitute a pair of 
protocols that can implement the control interface provided for 
a SDN controller. The control and configuration 
request/response messages can be transmitted by using these 

TABLE XI 
SUMMARY OF QKD NETWORK INTERFACES AND PROTOCOLS 

Interface Location Protocol Use case 

Management 
interface 

Between QKD network 
manager and QKD nodes 

SNMP, 
CORBA 

[38], [39] 
Between QKD network 
manager and controller 

Between QKD network 
manager and applications 

Control 
interface 

Between QKD network 
controller and QKD nodes 

OpenFlow, 
NETCONF 

[201], [202] 

Application 
interface 

Between QKD nodes and 
applications 

REST API 
(HTTPS, 
 JSON) 

[47], [222] 
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two protocols. OpenFlow can define a protocol through which 
a SDN-enabled QKD network controller can control the 
OpenFlow-enabled QKD nodes [201], [202]. The NETCONF 
protocol is a transaction-based entity and its data encoding 
usually relies on the Extensible Markup Language, which 
provides mechanisms for installing, manipulating, and deleting 
the configuration of QKD nodes. A detailed overview of SDN 
designed for QKD networks is provided in Section VI-A. 

3) Application Interface and Protocol: The application 
interface of Fig. 17 in a QKD network is between the 
infrastructure layer and the application layer. The local key 
manager in a QKD node communicates with the local 
cryptographic applications via the application interface. The 
secret keys are delivered from the local key manager to the 
local cryptographic applications by using this interface. 
Moreover, the application interface has been specified in the 
group specification ETSI GS QKD 004 [221]. 

The application interface is used for secret-key delivery, 
which can be implemented by the Representational State 
Transfer (REST) application programming interface (API). 
The REST API can use the HyperText Transfer Protocol 
Secure (HTTPS) version and the JavaScript Object Notation 
(JSON) data format for delivering secret keys to cryptographic 
applications. The REST API is regarded as a simple, 
lightweight, and widely used technique in many application 
domains, which has been adopted in the Cambridge QKD 
network [47]. Recently, the REST API specification 
formulated for secret-key delivery in a QKD network has been 
described in the group specification ETSI GS QKD 014 [222].  

V. ENABLING TECHNIQUES IN THE PHYSICAL LAYER FOR QKD 

NETWORKS 

In recent years, sophisticated technologies have been 
developed for supporting the QKD network infrastructure at a 
moderate cost, while aiming for wide coverage and high 
robustness. In this section, we conduct an in-depth survey of 
the enabling technologies in the physical layer domain, 
covering the techniques of co-fiber transmission, relaying, 
satellite-based QKD and chip-based QKD. 

A. Co-Fiber Transmission 

The co-fiber transmission terminology is introduced as a 
compact expression to indicate that the QKD and classical 
channels are travelling on the same fiber. The pivotal challenge 
of co-fiber transmission arises from the extreme contrast in the 
intensities of quantum and classical signals, since each 
quantum signal typically contains less than one photon per 
pulse on average, while a classical pulse may contain 106 
photons or more for a Gb/s link. Another challenge is that the 
nonlinear noise generated by impairments such as Raman 
scattering and four-wave mixing (FWM) will cause severe 
contamination of the quantum signals. 

In order to protect the vulnerable quantum signals from the 
deleterious impact of high-power classical signals, many 
practical QKD networks have been rolled out by relying on 
dark fibers. Nevertheless, given the difficulty of installing new 

fibers and the shortage of dark fiber resources in existing 
optical networks, the dark fiber has become a scarce and costly 
resource that may no longer be available for the widespread 
deployment of QKD networks. Hence the option of rolling out 
the QKD network infrastructure by sharing the established 
fiber infrastructure has attracted much attention, paving the 
way for the coexistence of quantum signals with classical 
signals in the same fiber. In 1997, Townsend [223] reported the 
first co-fiber transmission experiment by using the WDM 
technique for multiplexing the quantum and classical channels 
in a SMF, which provided a blueprint for the co-fiber 
transmission investigations that followed. Hence, a variety of 
theoretical, experimental, and in-field studies using the WDM 
technique for supporting the coexistence of quantum and 
classical signals in the same fiber have been reported 
[224]–[261]. Moreover, several new multiplexing techniques 
have been conceived for co-fiber transmission [262]–[281]. In 
the following paragraphs, we review the research efforts 
dedicated to the co-fiber transmission of quantum and classical 
signals from the perspective of WDM theories, WDM 
experiments, WDM field trials, and new multiplexing 
techniques. 

1) Theoretical WDM Investigation: WDM is one of the 
most widely used techniques in commercial optical networks, 
which is beneficial for increasing the throughput of optical 
fibers used in the transmission line. Hence, it is natural to 
combine QKD transmissions with the existing optical networks 
using the WDM technique, which can accelerate the 
commercialization of QKD networks. A schematic diagram of 
multiplexing quantum and classical (data) channels in a SMF 
using WDM is shown in Fig. 20. The quantum channel is 
launched into a SMF accompanied by classical channels such 
as the classical channel used both for QKD and for high-speed 
data channels. Inevitably, various physical-layer impairments 
are inflicted during co-fiber transmission, such as Raman 
scattering, FWM, and amplified spontaneous emission (ASE) 
[224]. The performance of the quantum channel and the QKD 
system may be severely deteriorated by these impairments.  

The potential impact and their mitigation strategies suitable 
for various physical-layer impairments imposed by classical 
channels on the performance of QKD have been theoretically 
analyzed in [225]–[228]. Specifically, the effects of Raman 
noise, and of spontaneous Raman scattering inflicted by a 
classical channel on a quantum channel have been 
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quantitatively evaluated in [229]. On a similar note, the impact 
of spontaneous Raman scattering on a quantum channel 
coexisting with multiple classical channels in a SMF has been 
analyzed in [230]. To overcome the limitations engendered by 
Raman noise, Fröhlich et al. [231] designed a dual feeder 
architecture for integrating multi-user QKD transmissions into 
a Gigabit passive optical network (GPON). To reduce the 
FWM noise, Sun et al. [232] developed a user-specific 
channel-interleaving aided WDM approach combined with 
unequal frequency spacing. For jointly suppressing the Raman 
noise and FWM noise, Niu et al. [233] proposed an optimized 
channel allocation scheme, allowing QKD to tolerate the 
presence of high-power classical signals conveying many 
classical channels within a SMF. Based on WDM, a prototype 
of the quantum metropolitan optical network [156] has been 
described and characterized, allowing the deployment of a 
technologically realistic and cost-effective QKD network over 
commercial telecommunication networks. 

2) WDM System Experiment: Both the C-band (1530–1565 
nm) and O-band (1260–1360 nm) within a SMF can be used for 
the joint transmission of quantum and classical signals. Hence, 

different WDM layouts can be considered for quantum and 
classical channels within a SMF for their co-fiber transmission. 
Table XII summarizes the system experiments dedicated to the 
co-fiber transmission of quantum and classical channels using 
WDM, which are detailed in the following paragraphs 
according to their different WDM layouts. 

By choosing the O-band as the quantum band and C-band as 
the classical band, the sufficient isolation of the quantum and 
classical channels can be ensured. In his seminal work, 
Townsend [223] first used WDM to multiplex a quantum 
channel accommodated at 1300 nm with a 1.2 Gb/s data 
channel near 1550 nm over a 28 km length of installed fiber. 
Toliver et al. [234] demonstrated the coexistence of 1310 nm 
quantum signals with amplified DWDM signals over a 10 km 
SMF. In [235], the minimum required wavelength difference 
between a quantum channel at 1310 nm and a classical channel 
near 1550 nm over a 10 km fiber link was experimentally 
analyzed. Runser et al. [236] presented an experimental 
demonstration of the co-fiber transmission of quantum signals 
at 1310 nm and classical signals around 1550 nm over a 25 km 
SMF. In [237], an erbium doped fiber amplifier (EDFA) bypass 

TABLE XII 
SUMMARY OF SYSTEM EXPERIMENTS FOR CO-FIBER TRANSMISSION OF QUANTUM AND CLASSICAL CHANNELS USING WDM 

Quantum band 

(wavelength) 
Classical band 

Number of 

classical 

channels 

Classical 

signal launch 

power 

Multiplexed 

data bandwidth 

Achievable 

distance 

Maximum 

secret-key 

rate 

QKD 

type 
Year Reference 

O-band (1300 nm) C-band 1 Tunable 1.2 Gbps 28 km N/A DV 1997 [223] 

O-band (1310 nm) C-band 4 Tunable N/A 10 km 100 bps DV 2004 [234] 

O-band (1310 nm) C-band 1 6 dBm N/A 10 km 70 bps DV 2005 [235] 

O-band (1310 nm) C-band 4 Tunable 17.5 Gbps 25 km 9 bps DV 2005 [236] 

O-band (1310 nm) C-band 4 –21 dBm 40 Gbps 15 km 8 bps DV 2006 [237] 

C-band (1549.3 nm) C-band 4 –2 dBm 10 Gbps 50 km N/A DV 2006 [240] 

O-band (1310 nm) C-band 4 Tunable N/A 10 km 100 bps DV 2009 [168] 

C-band (1549.32 nm) C-band 2 –5 dBm N/A 25 km 6 bps DV 2009 [241] 

C-band (1551.72 nm) C-band 4 Tunable 1 Gbps 50 km 11 bps DV 2010 [242] 

C-band (1550 nm) L-band 3 Tunable 1.25 Gbps 90 km 7.6 kbps DV 2012 [253] 

C-band (1548.52 nm) C-band 2 Tunable 20 Gbps 70 km 52 kbps DV 2014 [244] 

C-band (1531.12 nm) C-band 1 −3 dBm N/A 75 km 490 bps CV 2015 [245] 

C-band (1550 nm) L-band 3 Tunable 1.25 Gbps 25 km 1 Mbps CV 2015 [254] 

C-band (1550.12 nm) O- and C-band 2 −5 dBm 100 Mbps 45 km 4 kbps DV 2015 [255] 

C-band (1547.72 nm) C-band 2 Tunable 200 Gbps 101 km 10 kbps DV 2016 [69] 

O-band (1310 nm) C-band 32 10 dBm 7.168 Tbps 80 km 1 kbps DV 2017 [239] 

C-band (1548.51 nm) C-band 1 −5 dBm 100 Gbps 150 km 1 kbps DV 2017 [87] 

C-band (1550 nm) C-band 20 18 dBm 560 Gbps 5 km N/A CV 2017 [246] 

C-band (1549.2 nm) C-band 7 4 dBm 87.5 Gbps 10 km 50 kbps CV 2018 [247] 

C-band (1549.6 nm) C-band 18 14 dBm 3.5 Tbps 10 km 75 kbps CV 2018 [248] 

C-band (1550 nm) C-band 10 3 dBm 100 Gbps 20 km 90 kbps CV 2018 [249] 

C-band (1549.5 nm) C-band 100 12.9 dBm 18.3 Tbps 10 km 28.9 kbps CV 2019 [250] 

S-band (1504.98 nm) C-band 56 13.6 dBm 5.6 Tbps 25 km N/A CV 2019 [256] 

C-band (1532.68 nm) C-band 5 −14 dBm 50 Gbps 40 km N/A DV 2019 [251] 

C-band (1550 nm) C-band 1 6 dBm N/A 13 km 300 kbps CV 2020 [103] 

C-band (1531.9 nm) C-band 11 15.6 dBm N/A 13.2 km 12 Mbps CV 2020 [252] 
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and filtering architecture was proposed, allowing a quantum 
channel at 1310 nm to coexist with four classical channels 
operating around 1550 nm and amplified in mid-span over a 15 
km fiber link. Chapuran et al. [168] experimentally 
characterized the coexistence of a quantum channel at 1310 nm 
and four classical data channels near 1550 nm in the same fiber, 
where the impact of Raman noise on the quantum signals was 
measured. Aleksic et al. [238] experimentally characterized the 
feasibility of QKD integration into metropolitan area networks, 
where the effect of Raman noise was analyzed. Furthermore, 
amplifier and node bypass solutions were also presented. In 
[239], the co-propagation of quantum signals and Terabit 
classical signals over a distance of 80 km was realized in an 
experiment, where a quantum channel was supported at 1310 
nm and 32 classical data channels were conveyed within the 
C-band. 

The lower attenuation and the resultant excellent 
transmission performance of the C-band is eminently suitable 
for conveying both the vulnerable quantum and the more robust 
classical signals. Xia et al. [240] conducted an experiment by 
multiplexing a quantum channel accommodated at 1549.3 nm 
and four classical channels in the C-band over a 50 km long 
optical fiber. Peters et al. [241] demonstrated the co-fiber 
transmission of a 1549.32 nm quantum channel and two 
classical channels using a reconfigurable optical add drop 
multiplexer (ROADM), where the impact of spontaneous 
Raman scattering and FWM on the quantum signals were 
measured and analyzed. Eraerds et al. [242] performed an 
experiment relying on multiplexing four classical channels with 
a quantum channel over a single fiber of 50 km length, in which 
both the quantum and classical channels were accommodated 
in the C-band. In [243], an experiment of simultaneous QKD 
transmission and bidirectional 10 Gb/s classical transmission 
was described within a single fiber, where a dual feeder fiber 
technique and a filtering scheme were used for reducing the 
Raman noise. In [244], the coexistence of QKD with 
bidirectional 10 Gb/s classical data signals was demonstrated 
within the same fiber, achieving secret-key rates of 2.38 Mbps 
over a 35 km fiber link and of 52 kbps over a 70 km fiber link. 
Kumar et al. [245] conducted several experimental tests for 
characterizing the coexistence of CV-QKD with a classical 

channel in the same fiber, where a secret-key rate of 490 bps 
was achieved over a 75 km fiber. Dynes et al. [69] 
experimentally multiplexed a quantum channel accommodated 
at 1547.72 nm along with two 100 Gb/s classical data channels 
around 1530 nm over a 101 km fiber link. Fröhlich et al. [87] 
demonstrated the coexistence of quantum signals at 1548.51 
nm with 100 Gb/s data signals within the C-band in a 150 km 
optical fiber. In [246], the coexistence of a quantum channel 
hosted at 1550 nm along with 20 classical channels (including 
4×100 Gb/s and 16×10 Gb/s) in the C-band of a SMF was 
experimentally investigated. In [247], the co-propagation of a 
quantum channel centred at 1549.2 nm and seven 12.5 Gb/s 
classical channels hosted in the C-band over a 10 km single 
fiber was investigated, achieving a secret-key rate in the range 
of 20 to 50 kbps. In [248], the coexistence of CV-QKD and 3.5 
Tbps classical channels was demonstrated in a 10 km SMF, 
where the influence of in-band ASE noise on CV-QKD was 
analyzed. Karinou et al. [249] experimentally realized the 
co-fiber transmission of a quantum channel and 10 classical 
channels within the C-band, supporting a secret-key rate of 90 
kbps over a 20-km fiber link in a CV-QKD system. Eriksson et 

al. [250] demonstrated the joint propagation of a quantum 
channel located at 1549.5 nm and 100 classical data channels 
associated with an aggregate transmission rate of 18.3 Tb/s in 
the C-band, achieving a secret-key rate of 28.9 kbps over a 10 
km SMF. Valivarthi et al. [251] characterized the simultaneous 
operation of MDI-QKD with five 10 Gb/s bidirectional 
classical channels in the vicinity of the 1550 nm wavelength 
over the same fiber of 40 km length. In [103], the coexistence 
of a CV-QKD system with a classical channel operating in the 
C-band was demonstrated, and a secret-key rate of 300 kbps 
was attained for a link length of 13 km. In [252], the 
co-propagation of a quantum channel accommodated at 1531.9 
nm and 11 classical DWDM channels conveyed within the 
C-band was accomplished over a 13.2 km fiber link, while 
supporting a secret-key rate of 12 Mbps. 

In addition to the aforementioned pair of typical WDM 
layouts, some studies have also considered other WDM layouts 
for the co-fiber transmission of quantum and classical channels. 
In [253], the coexistence of quantum signals at 1550 nm and 
Gigabit classical data signals within the L-band (1565–1625 

TABLE XIII 
SUMMARY OF FIELD TRIALS FOR CO-FIBER TRANSMISSION OF QUANTUM AND CLASSICAL CHANNELS USING WDM 

Quantum band 

(wavelength) 
Classical band 

Number of 

classical 

channels 

Classical 

signal launch 

power 

Multiplexed 

data bandwidth 

Achievable 

distance 

Maximum 

secret-key 

rate 

QKD 

type 
Year Reference 

C-band (1550 nm) L-band 1 −33.3 dBm N/A 97 km 820 bps DV 2008 [260] 

C-band (1547.72 nm) C-band 4 –10 dBm 40 Gbps 26 km 160 kbps DV 2014 [261] 

C-band (1550.12 nm) L-band 3 Tunable 1 Gbps 2.08 km 10 kbps CV 2016 [157] 

O-band (1310 nm) C-band 20 21 dBm 3.6 Tbps 66 km 5.1 kbps DV 2018 [182] 

C-band (1550 nm) C-band 2 Tunable 200 Gbps 10.6 km 2.58 Mbps DV 2019 [47] 

C-band (1550 nm) C-band 17 N/A N/A 3.9 km 70 kbps CV 2019 [163] 

C-band (1551.7 nm) C-band 4 Tunable 400 Gbps 1.9 km 1.28 kbps DV 2019 [127] 

O-band (1310 nm) C-band 5 Tunable 500 Gbps 14.2 km 1.95 kbps DV 2019 [128] 
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nm) over a 90 km fiber link was reported, in which the Raman 
noise was mitigated by a sophisticated filtering technique. 
Huang et al. [254] multiplexed a quantum channel hosted at 
1550 nm along with three classical channels accommodated in 
the L-band of a 25 km SMF, achieving a secret-key rate of 1 
Mbps for a CV-QKD system. Wang et al. [255] transmitted 
quantum signals at 1550.12 nm along with a pair of classical 
signals near 1310 nm and 1550 nm in a 45 km fiber. In [256], 
the coexistence of a quantum channel at 1504.98 nm in the 
S-band (1460–1530 nm) with 56 classical channels located in 
the C-band in a 25 km SMF was realized. Moreover, multiple 
quantum channels can be multiplexed onto a single fiber by 
using the WDM technique in order to achieve high secret-key 
rates in a QKD system [257]–[259].  

3) WDM Field Trials: Several field trials have investigated 
the coexistence of quantum and classical signals in a 
field-installed fiber [47], [127], [128], [157], [163], [182], 
[260], [261]. Table XIII summarizes the field trials studying the 
co-fiber transmission of quantum and classical channels using 
WDM. Tanaka et al. [260] transmitted quantum signals at 1550 
nm coexisting with clock signals in the L-band over a 97-km 
installed SMF. Choi et al. [261] reported on their field trial of 
simultaneous transmission of a quantum channel multiplexed 
with four 10 Gb/s classical data channels through a 26 km 
field-installed fiber. In [157], the field trials of a four-node 
CV-QKD network were reported on, in which a quantum 
channel located at 1550.12 nm and three classical channels 
hosted in the L-band were transmitted through the same fiber. 
In this CV-QKD network, the maximum secret-key rate has 
reached 10 kbps on one of the links having a length of 2.08 km. 
In [182], a field trial of integrating QKD with a commercial 
optical network conveying 3.6 Tb/s classical data signals in a 
66 km commercial fiber was reported, where both the 
co-direction propagation and opposite-direction propagation of 
the quantum and classical signals were tested. In a three-node 
QKD metropolitan network deployed in the field [47], a 

quantum channel coexisting with 200 Gb/s classical data 
channels within the C-band was characterized, and the 
maximum secret-key rate of 2.58 Mbps was achieved on a 10.6 
km fiber link. In [163], a field trial of a quantum channel 
combined with 17 classical channels on a 3.9 km fiber link of a 
QKD metropolitan network was demonstrated, achieving a 
secret-key rate of 70 kbps. As a further development, in [127], a 
field demonstration of a four-node DV-QKD network was 
reported, where the coexistence of quantum signals with 400 
Gb/s classical data signals was accommodated in the C-band 
over a 1.9 km fiber link. Wonfor et al. [128] reported on a field 
trial of transmitting quantum signals at 1310 nm integrated with 
500 Gb/s classical data signals in the C-band in a single fiber, 
achieving the maximum secret-key rate of 1.95 kbps on a 14.2 
km fiber link.  

4) New Multiplexing Techniques: In order to optimize the 
co-fiber transmission performance of quantum and classical 
signals, several novel multiplexing techniques have also been 
explored. Some of these investigations have harnessed 
orthogonal frequency-division multiplexing (OFDM) [262], 
TDM [137], [263], and other subcarrier multiplexing 
[264]–[267] techniques into co-fiber transmission, but these 
still tend to be less mature.  

Inspired by the idea of using space-division multiplexing 
(SDM) for further increasing the throughput of optical 
networks, SDM has recently attracted much interest also in the 
context of quantum and classical channels in the same fiber. In 
contrast to the WDM technique that uses a SMF for signal 
transmission, SDM techniques usually employ a multi-core 
fiber (MCF) or a few-mode fiber (FMF). Specifically, a SMF 
has to rely on multiple wavelengths, whereas the MCF and 
FMF add the extra resource dimensions of additional cores and 
modes in a single fiber, respectively. However, MCFs and 
FMFs suffer from a new physical-layer impairment, namely 
inter-core and inter-mode crosstalk. With respect to the 
theoretical investigations on quantum-classical coexistence 

TABLE XIV 
SUMMARY OF SYSTEM EXPERIMENTS FOR CO-FIBER TRANSMISSION OF QUANTUM AND CLASSICAL CHANNELS USING SDM 

Fiber type 

Quantum 

channel location 

(wavelength) 

Classical channel 

location (band) 

Classical 

signal launch 

power 

Multiplexed 

data bandwidth 

Achievable 

distance 

Maximum 

secret-key 

rate 

QKD 

type 
Year Reference 

7-core MCF 
Central core 
(1547.72 nm) 

Outer cores 
(C-band) 

0 dBm 20 Gbps 53 km 605 kbps DV 2016 [273] 

7-core MCF 
Central core 
(1550 nm) 

Outer cores 
(C-band) 

Tunable 112 Gbps 2.5 km N/A DV 2018 [274]  

7-core MCF 
Central core 
(1551.7 nm) 

Outer cores 
(C-band) 

Tunable 9.6 Tbps 1 km 191 bps DV 2018 [275] 

19-core MCF 
One outer core 
(1550.35 nm) 

Neighboring cores 
(C-band) 

Tunable N/A 10.1 km 47 Mbps CV 2019 [276] 

7-core MCF 
One outer core 
(1549.32 nm) 

Neighboring cores 
(C-band) 

0 dBm N/A 1 km 10.9 kbps DV 2019 [277] 

37-core MCF 
All cores 
(1550 nm) 

All cores 
(C-band) 

N/A 370 Gbps 7.9 km 62.8 Mbps DV 2019 [278] 

7-core MCF 
Central core 
(1551.7 nm) 

All cores 
(C-band) 

Tunable 11.2 Tbps 1 km 920 bps DV 2020 [280] 

Weakly- 
coupled FMF 

LP01 mode 
(1550.12 nm) 

LP02 mode 
(C-band) 

–2.6 dBm 100 Gbps 86 km 1.3 kbps DV 2020 [281] 
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based on SDM, a system model of integrating QKD into SDM 
transmission over MCFs and FMFs has been presented in [268], 
while the theoretical characterization of inter-core spontaneous 
Raman scattering on QKD in MCFs has been established in 
[269]. Additionally, Xavier et al. [270] provided an overview 
of quantum information processing in the context of SDM 
optical fibers. As a further advance, the theoretical models for 
characterizing the Raman noise and FWM noise impacts of 
classical signals on QKD transmissions over MCFs have been 
proposed in [271], [272]. 

In recent years, an increased number of system-level 
experiments has been performed for characterizing the co-fiber 
transmission of quantum and classical channels using SDM, 
which are summarized in Table XIV . Most of these 
experiments use MCFs. Dynes et al. [273] performed an 
experiment transmitting quantum signals in the central core and 
bi-directional 10 Gb/s classical signals in two of the six outer 
cores over a 53 km 7-core MCF. Lin et al. [274] experimentally 
characterized QKD coexisting with 112 Gb/s data transmission 
in two different types of 7-core MCFs. In [275], the 
simultaneous transmission of quantum signals and 9.6 Tb/s 
classical signals over a 1 km 7-core MCF was demonstrated, 
where the central core was used for a quantum channel located 
at 1551.7 nm and each of the six outer cores was used for 1.6 
Tb/s classical data transmission. Eriksson et al. [276] 
experimentally characterized the impact of crosstalk on 
CV-QKD in an outer core inflicted by classical channels in 
three neighboring cores of a 19-core MCF, verifying that the 
in-band crosstalk from neighboring cores may prohibit the 
high-integrity generation of secret keys. In [277], a 
quantum-classical interleaving scheme (i.e., interleaving the 
wavelengths in a quantum-signal core and a classical-signal 
core, with no wavelength overlap between these two types of 
cores) was proposed to alleviate the inter-core crosstalk 
imposed on quantum signals transmitted in an outer core by the 
classical signals propagating in three neighboring cores of a 
7-core MCF. Bacco et al. [278] demonstrated the 
co-propagation of classical and quantum channels over a 
37-core MCF and achieved a total secret-key rate of 62.8 Mbps, 
where each core consisted of a 10 Gb/s classical channel and a 
quantum channel using different wavelengths. In [279], the 
QKD coexistence with classical signals was evaluated over two 
types of MCFs, where the impacts of inter-core crosstalk and 
intra-core spontaneous Raman scattering on the quantum 
signals engendered by high-speed classical data signals were 
characterized. Hugues-Salas et al. [280] characterized the 
coexistence of 11.2 Tb/s classical channels in all cores with a 
quantum channel in the central core over a 1 km 7-core MCF. 
In addition to the experiments associated with MCF, Wang et al. 
[281] characterized the co-propagation of QKD with a 100 
Gb/s classical data channel in a weakly-coupled FMF, 
achieving a secret-key rate of 1.3 kbps over 86 km FMF. 

B. Relaying 

The distance and secret-key rate of QKD systems are limited 
by several physical-layer impairments, such as the scattering 

and loss of faint quantum signals transmitted in quantum 
channels. In particular, amplifying a quantum signal would 
require measuring and cloning its related quantum states, which 
is against the quantum no-cloning theorem. Consequently, the 
realization of long-distance QKD networks has to rely on 
repeaters/relays. 

A quantum repeater facilitates the restoration of quantum 
information without directly measuring the quantum states, 
which was first proposed in 1998 [133]. Initially, it was 
believed that the implementation of quantum repeaters requires 
matter quantum memories [282], [283] or matter qubits [284]. 
However, this hypothesis was later disproved by a proposal of 
all-photonic quantum repeaters [285] purely relying on optical 
devices. Given the compelling security benefits of QKD 
networks, quantum repeaters have attracted increasing research 
efforts [50], [286]–[289], as also indicated by the detailed 
overviews found in [51], [134]. Nonetheless, the design of 
quantum repeater networks is still in its infancy [59], [135], 
[290], and a practical quantum repeater that can be deployed in 
real-world QKD networks has yet to be implemented.  

A viable solution to increase both the secret-key rate and the 
range of QKD without quantum repeaters is by inventing 
repeaterless schemes to overcome the fundamental 
rate-distance limit of QKD defined in [291]. The maximum 
achievable secret-key rate for a given distance was quantified 
by the secret-key capacity of the quantum channel in [292], 
hence QKD schemes presented before 2018 can never surpass 
the secret-key capacity bound. However, in 2018, Lucamarini 
et al. [107] proposed a TF-QKD protocol, which was capable 
of exceeding the point-to-point secret-key capacity of a 
quantum channel without using a quantum repeater. 
Subsequently, Minder et al. [293] experimentally characterized 
the TF-QKD protocol in a high channel loss regime, providing 
the experimental evidence that it is indeed possible to exceed 
the repeaterless secret-key capacity of [292], which has also 
been further validated by several additional experiments 
[293]–[296]. However, the TF-QKD technique is unable to 
extend the QKD range to an arbitrary distance and its distance 
record in experiments at the time of writing is 605 km [73]. 
Similarly, Ma et al. [108] presented a PM-QKD protocol, 
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Fig. 21.  Illustration of the QKD distance extension via a trusted relay between 
Alice and Bob. 
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which was also capable of surpassing the linear 
rate-transmittance bound of [292], since it achieved a distance 
of 502 km in the experiments [71]. 

A compromise solution that allows for an arbitrary extension 
of the QKD distance is that of using trusted relays, which have 
been widely adopted in real-world QKD networks [42]–[49]. 
An example of extending the distance of QKD via a trusted 
relay between Alice and Bob is depicted in Fig. 21. The trusted 
relay establishes a QKD link to both Alice and Bob. Both QKD 
links produce their independent secret keys, namely KA and KB 
of the same string length. The trusted relay combines the secret 
keys KA and KB with the aid of the OTP method, i.e., performs a 
bitwise exclusive OR operation between KA and KB, and then 
sends the result KA ⊕ KB to Bob. Based on KB ⊕ (KA ⊕ KB) = 
KA, Bob can retrieve the secret keys KA. It should be noted that 
there are several optional secret-key relay schemes based on the 
trusted relay concept, which have been discussed in the Y.3803 
recommendation produced by ITU-T [297]. The benefits of the 
trusted relay technique is its reduced complexity and its ability 
to support long-distance QKD networking, but it must be 
physically isolated and trustable, since it will know the secret 
keys.  

There are several trusted relay variants. For example, Stacey 
et al. [298] presented a simplified trusted relay and examined 
its security level. Such a trusted relay may indeed simplify the 
associated computations and reduce the communication 
overhead during the relaying process at the expense of an 
eroded secret-key rate. Elkouss et al. [299] drew on the idea of 
network coding to alleviate the system’s dependence on trusted 
relays, and proposed the concept of weakly trusted relays for 
QKD networks. Zou et al. [300] described a partially trusted 
relay based QKD networking solution by combining the 
MDI-QKD protocol with trusted relays, since MDI-QKD 
allows the use of untrusted relays [301], [302]. Moreover, the 
entanglement-based approach of [303] holds the promise of 
establishing QKD links that are capable of completely 
dispensing with any level of trust, but it is still not mature 
enough to be used in practical large-scale QKD networks. 

C. Satellite-Based QKD 

The fiber-based QKD networks cannot be readily supported 
in harsh terrain, and the signal is typically attenuated at the rate 
of 0.2 dB/km in the optical fiber [304]. Therefore, establishing 
QKD networks over ultra-long distances is facing enormous 
technological hurdles. One solution is that of resorting to free 
space, since the atmospheric attenuation in free space is less 
significant than in optical fiber, especially in the vacuum above 
the Earth’s atmosphere. Satellites have the potential of 
distributing secret keys to ground stations via free space links, 
which can be used as intermediate trusted relays for 
interconnecting QKD networks in different physical locations 
on the ground [196]. Hence, the satellite-based QKD holds the 
promise of increasing the range of QKD networks to a global 
scale [49]. 

Hence, several successful free-space QKD experiments 
[305]–[313] have been performed with the goal of 

satellite-based QKD realization. In [314], a feasibility analysis 
of QKD transmissions over Earth-satellite links and 
inter-satellite links was provided. Bourgoin et al. [315] 
conducted a numerical simulation relying on realistic simulated 
orbits and analyzed the performance of the LEO satellite uplink 
and downlink for quantum-signal transmissions. In [316], three 
independent experiments were performed for verifying the 
feasibility of ground-satellite QKD. In [74], the air-to-ground 
QKD between an aeroplane and a ground station was 
experimentally demonstrated. Vallone et al. [317] 
demonstrated space-to-ground QKD by employing so-called 
corner cube retroreflectors as transmitters in orbit to the Matera 
Laser Ranging Observatory of the Italian Space Agency in 
Matera, Italy. 

In August 2016, the first quantum satellite, named after 
Micius [75], was launched in Jiuquan, China, which is a LEO 
satellite and can be used to perform satellite-to-ground QKD 
experiments at night. In this context, significant progress has 
been made in the design of photon sources [318], [319], optical 
links [320], [321], and detectors [322], [323] for satellite-based 
QKD. As for satellite-based QKD, Bedington et al. [196] 
reviewed the technical challenges and summarized the quantum 
satellite initiatives around the world, while Khan et al. [83] 
provided an overview of the principles and engineering 
challenges as well as the airborne and space missions 
associated with QKD.  

In 2018, Liao et al. [48] reported the experimental 
demonstration of a satellite-based QKD network, where a 
quantum satellite (i.e., Micius [75]) was used as a trusted relay 
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Fig. 22.  Illustration of the three steps to enable two ground stations to share a 
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for connecting Xinglong ground station in China and Graz 
ground station in Austria. In this network, three steps have to be 
carried out to enable two ground stations to share a secret key 
based on the quantum satellite, as illustrated in Fig. 22. In the 
first two steps, the quantum satellite implements 
satellite-to-ground QKD with both ground stations to produce 
independent secret keys with each of them, e.g., KX with 
Xinglong ground station and KG with Graz ground station. The 
quantum satellite holds all the secret keys, while each ground 
station only has access to its own secret keys. In the last step, 
the quantum satellite combines the independent secret keys KX 
and KG with the aid of the OTP method, i.e., performs a bitwise 
exclusive OR operation between KX and KG of the same string 
length, and then broadcasts the result KX ⊕ KG. Using this 
announcement, the Xinglong ground station and Graz ground 
station can retrieve each other’s secret keys, since KX ⊕ (KX ⊕ 
KG) = KG and KG ⊕ (KX ⊕ KG) = KX. Notably, the quantum 
satellite must be trusted in this network. However, the 
requirement of trustworthiness can be eliminated by employing 
a robust QKD protocol capable of maintaining security even in 
the face of untrusted relays. In particular, in June 2020, an 
experimental demonstration of entanglement-based QKD was 
carried out between two ground stations separated by 1,120 km 
in China [324], relying on the Micius satellite as an untrusted 
relay for distributing the entangled states to the corresponding 
two ground stations to implement the BBM92 protocol. 

To increase the coverage time for a satellite-based QKD 
network, daytime operation should also be supported by a 
quantum satellite. Liao et al. [76] validated the feasibility of 
free-space QKD in daylight for inter-satellite communications. 
To miniaturize the quantum satellites and reduce the cost of 
satellite-based QKD networks, low-cost microsatellites and 
nanosatellites should be adopted. In this spirit, Takenaka et al. 
[325] implemented a microsatellite-based LEO-to-ground link 
and verified its applicability to QKD. Grieve et al. [326] 
demonstrated the feasibility of QKD using CubeSat 
nanosatellites. In order to expand the coverage area as a first 
step towards an efficient global satellite-based QKD network, 
higher-orbit quantum satellites can be launched and seamless 
satellite constellations can be established. Explicitly, a satellite 
constellation consists of multiple quantum satellites operating 
in LEO or high earth orbit such as the geosynchronous orbit. 
Vergoossen et al. [327] proposed a model for a 
satellite-constellation based QKD network, in which the 
concept of a LEO quantum satellite acting as a trusted relay was 
defined and its efficiency in different constellations was 
investigated. In [328], a trusted relay based double-layer QKD 
network architecture relying on both LEO and geosynchronous 
satellites was proposed, where the problem of routing and 
secret-key assignment was addressed by jointly considering 
both LEO and geosynchronous satellite resources. 

D. Chip-Based QKD 

The large-scale practical deployment of QKD requires 
chip-scale integrated photonic devices for miniaturization, low 
power consumption, reduced cost, and high robustness [329]. 

The evolution of chip-based QKD solutions is shown in Fig. 23. 
Early steps in this direction exploited a Mach-Zehnder 
interferometer using planar lightwave circuit technology [330] 
for stabilized operation in a QKD system [331]–[334]. Duligall 
et al. [335] designed a low-cost and compact QKD system 
using off-the-shelf integrated circuit components in a driver 
circuit for the transmitter module. As a further development, 
Zhang et al. [336] conceived a client-server QKD scheme, 
where all the bulky components are located at the server side 
(receiver side) and the client side (transmitter side) requires 
only an integrated photonic device that can be further 
integrated into a hand-held device. Vest et al. [319] designed a 
compact transmitter having an effective size of 25 mm × 2 mm 
× 1 mm, aiming for incorporating the QKD transmitter module 
in a hand-held device such as a smartphone.  

The integration efforts at the transmitter side have 
accelerated the development of chip-scale transmitters 
conceived for QKD systems. A QKD transmitter chip has been 
fabricated using a standard silicon photonic foundry process 
[337], where several components can be integrated into a 1.3 
mm × 3 mm die area [338]. The chip-scale transmitter has a 
bright application perspective in the upstream of QKD access 
networks [130], in which each user has a compact uplink 
transmitter, while the uplink receiver at the network node has 
sufficient space for accommodating the bulky components.  

However, fully integrated compact chip-based QKD systems 
are required for a wide range of applications. Hence, Sibson et 

al. [329] designed chip-to-chip QKD systems relying on three 
different QKD protocols, namely the BB84, COW, and DPS 
schemes, where an indium phosphide transmitter chip and a 
silicon oxynitride receiver chip were fabricated. Apart from the 
integrated photonic indium phosphide and silicon oxynitride 
platforms, Sibson et al. [339] experimentally validated the 
feasibility of high-speed QKD integrated circuits based on 
standard silicon photonic fabrication.  

Moreover, significant progress has been achieved in the 
demonstration of silicon photonic chips designed for SDM 
chip-to-chip QKD [340], high-dimensional QKD based on 
MCF [341], on-chip CV-QKD [342]–[344], and transceiver 
circuit [345], [346]. Recent experiments have demonstrated the 
feasibility of an MDI-QKD integrated measurement server 
[347] and of chip-based MDI-QKD transmitters [348], [349], 
suitable for cost-effective QKD access/metropolitan networks 
relying on untrusted relays. Furthermore, Orieux et al. [350] 
reviewed the advances in the field of integrated quantum 
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communications, whereas Zhang et al. [351] surveyed the 
evolution of quantum photonic networks on chip. 

Beyond the realms of laboratory based chip-scale QKD 
demonstrations, in 2018, Bunandar et al. [175] described their 
local and intercity field tests of metropolitan QKD using a 
high-speed silicon photonics-based encoder. Their encoder 
combined a Mach-Zehnder modulator with interleaved grating 
couplers for polarization-encoded QKD. Prior to this 
pioneering advance, a diverse range of different photonic 
degrees of freedom were explored, including the following 
domains: polarization [21], [305], time [85], [329], frequency 
[352], [353], phase [93], [331], [332], quadrature [89], [116], 
and orbital angular momentum [354]. They all have different 
pros and cons for employment in QKD systems. Polarization is 
generally considered to be unstable for practical fiber-based 
QKD, but as a remedy, silicon photonics-based encoders can 
correct the associated polarization drifts in a fiber link, 
ultimately resulting in a compact and stable platform for 
polarization-encoded QKD. These field tests have 
demonstrated that photonic integrated circuits can indeed serve 
as a promising and scalable platform for future metropolitan 
QKD networks. Notably, in 2021, Toshiba demonstrated a 
fully deployable chip-based QKD system [355], which served 
as a stepping stone for the realistic deployment of QKD based 
on quantum photonic chips. 

VI.  ENABLING TECHNIQUES IN THE NETWORK LAYER FOR 

QKD NETWORKS 

In the past few years, numerous efforts have been made to 
address the technical challenges of practical QKD networking. 
This section provides an in-depth overview of the enabling 
techniques proposed for the network layer, covering the issues 
of SDN, key pooling, resource allocation, routing, protection 
and restoration, practical security, cost optimization, and 
multi-user QKD. 

A. SDN 

SDN [356], [357] constitutes an efficient network control 
and management technique, which enables the flexible and 
programmable configuration of the entire network from a 
central platform, namely the SDN controller. Based on this 
centralized controller containing all the pivotal information of a 
network, it becomes possible to maintain a global perspective 
and to react promptly in complex unexpected network 
scenarios. Hence, the SDN concept is capable of efficient QKD 
network control and management in order to improve the 
network performance [217], [218]. Additionally, the practical 
deployment of QKD services critically relies on the degree to 
which it can be integrated into the ubiquitous fiber 
infrastructure of the existing telecommunication networks. As a 
further benefit, the SDN concept can simplify the integration of 
new devices and technologies into the network. 

Recently, a series of studies have investigated diverse use 
cases of SDN-enabled QKD networks. A software-defined 
quantum communication framework has been presented in 
[358], where a quantum communication terminal was 

represented in form of three layers, i.e., hardware, middleware, 
and software layers. In [359], a programmable multi-node 
quantum network was designed based on the SDN principles. 
Dasari et al. [360] described the network abstraction and 
configuration interfaces required for implementing a 
SDN-enabled programmable quantum network. Yu et al. [361] 
conceived a novel SDN-enabled QKD network architecture, 
requiring a reduced secret key, yet improving the QKD 
network’s availability and performance. In [362], a SDN-based 
QKD network model relying on a sophisticated routing 
algorithm was proposed. Humble et al. [363] presented a 
quantum network switching solution based on cutting-edge 
SDN principles, in which a programmable quantum switch was 
used to support the establishment of a desired quantum channel. 
In addition, Wang et al. [364] provided a brief overview of the 
SDN-enabled QKD network architecture as well as of its 
related interfaces and protocols. 

On the experimental side, Cao et al. [201], [202], [365] 
exploited the SDN philosophy in support of QKD as a service 
(QaaS) [366], multi-tenant provision [200], and key on demand 
(KoD) service provision [204]. In these use cases, the 
above-mentioned specific functions were developed for the 
SDN controller, and the original OpenFlow protocol was 
extended and the associated detailed workflows were 
conceived. Moreover, an experimental testbed was established 
for demonstrating the efficiency and flexibility of the 
SDN-based approaches conceived for QaaS, multi-tenant 
provision, and KoD service provision.  

As a further development, Aguado et al. [210] adopted SDN 
in a cost-efficient approach for time-sharing the QKD systems, 
where the ease of integrating QKD systems with a network 
function virtualization (NFV) platform was experimentally 
demonstrated. In [367], [368], the necessary workflows and 
protocol extensions of different SDN scenarios were defined 
and demonstrated for providing end-to-end quantum 
encryption services, in which the key synchronization process 
required for the subsequent encryption may be readily 
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Fig. 24.  Abstraction model of a SDN-enabled QKD node [163], [217].  
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integrated into the main protocols for control interface 
implementation. Hugues-Salas et al. [369], [370] developed a 
SDN application for the real-time monitoring of the associated 
quantum parameters (e.g., QBER and secret-key rate) and for 
triggering the appropriate action in the event of link level 
attacks to ensure the uninterrupted distribution of the secret 
keys. Egorov et al. [371] investigated the capability of the SDN 
paradigm to support subcarrier based QKD systems relying on 
the OpenFlow protocol to orchestrate routing based on the 
associated link parameters. In [372], a machine learning aided 
SDN relying on optimal resource allocation was constructed for 
investigating the coexistence of quantum and classical channels 
in a QKD-integrated optical network field trial. In [373], the 
authors extended the standard Open Networking Foundation 
(ONF) transport API [374] of a SDN to enable quantum 
encryption in end-to-end services. 

Further innovative SDN solutions were disseminated by 
Aguado et al. [163] reporting on a converged 
quantum-classical network constructed in Madrid, Spain. Such 
a network demonstrated the first SDN-based QKD network in 
the field. Furthermore, this network has been used to support 
path verification in the associated service function chains [375]. 
The abstraction model of an SDN-enabled QKD node used in 
this network is shown in Fig. 24, which has been defined within 
the ETSI GS QKD 015 [217]. Observe at the bottom of Fig. 24 
that several QKD transceivers are placed in the same physical 
location, which are able to establish quantum channels and 
produce secret keys. The secret keys produced are stored in a 
key manager, which manages the secret keys derived from 
different QKD transceivers that are collected via a key 
extraction interface. This key manager can deliver the secret 
keys to multiple applications. By relying on the key manager 
and the QKD transceivers of Fig. 24 within the node, a SDN 
agent becomes capable of collecting important information 
from the node of communicating with the SDN controller, as 
well as satisfying the process configuration updates requested 
by the SDN controller.   

B. Key Pooling 

The achievable secret-key rates of most point-to-point QKD 
systems are very low at the time of writing, for example, 1.2 
Mbps over a 50.5 km fiber link [69] and 6.5 bps over a 405 km 
fiber link [70]. In order to guarantee high security, the secret 
keys produced by the QKD systems in a QKD network cannot 
be reused, hence they constitute precious resources that have to 
be frugally employed. 

Conventionally, the quantum key pool (QKP) is used as a 
repository of the local secret keys generated, which also has to 
be synchronized with other sites [203], [376]. The QKPs 
located at two directly connected sites of a QKD network must 
match in content so that the same secret keys can be referenced 
and discovered. When the QKPs are initialized, the secret keys 
are derived from QKD transceivers and injected into their 
connected QKPs. Once the QKP is full, naturally, no new secret 
keys may be injected, because the available secret keys would 
be overwritten by the new ones. It is also possible to increase 

the size of a QKP to contain more secret keys. Notably, the 
QKP should be physically protected so that it cannot be 
accessed directly by any illegitimate means. Additionally, a 
logical key pool was proposed in [203], which contains global 
secret keys produced by relying on key relaying between a pair 
of end nodes, which may be employed to facilitate the 
management of global secret keys. A temporary key pool of 
[376] acts as a key buffer that manages the temporary storage of 
the local secret keys being relayed by a local node, which 
improves the efficiency of key relaying. 

On the other hand, the overall lifetime of secret keys has to 
be monitored and managed efficiently, which involves several 
stages, such as the secret-key generation, storage, relay, supply, 
and destruction. In contrast to conventional key pools used to 
collect secret keys, several new key pooling techniques have 
been presented in the literature for improving the efficiency of 
secret-key monitoring and management [200], [204], [208], 
[377].  

The new concepts of key pool (KP) and virtual key pool 
(VKP) have been described in [208] and they are illustrated at a 
glance in Fig. 25. The secret keys are synchronously generated 
between a pair of connected QKD transceivers and stored in the 
corresponding key managers. The key managers can supply 
secret keys to multiple services for their data encryption. The 
QKD transceivers and key managers are embedded into their 
corresponding QKD nodes. A KP (e.g., KPAB between QKD 
nodes A and B) abstracted from two key managers is able to 
monitor the real-time secret-key rate/volume information, and 
manage the secret-key generation, storage, relay, supply, and 
destruction in a pair-wise manner. A VKP abstracted from a KP 
may be granted management privileges for a portion of secret 
keys and use these secret keys for enhancing the security of a 
dedicated service, e.g., VKPAB-1 and VKPAB-2 abstracted from 
KPAB for Services 1 and 2, respectively. The secret keys are 
processed locally and the KPs/VKPs are used for improving the 
management efficiency of the associated secret keys. More 
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Fig. 25.  Illustration of the new concepts of KP and VKP [208]. 
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concretely, all the stages during the overall lifetime of secret 
keys are handled within the QKD nodes across the QKD 
network in a distributed manner. Hence, the security of keys is 
not sacrificed when using KPs/VKPs, since they are not 
exchanged across different physical locations. In practice, the 
KPs and VKPs can be implemented based on the SDN 
controller. 

C. Resource Allocation 

In QKD networks, multiple resource dimensions have to be 
considered. Naturally, resource allocation for the quantum and 
classical channels hinges on the specific multiplexing 
techniques used in the network, as exemplified by the 
wavelength, time slot, and core/mode resources of WDM, 
TDM, and SDM, respectively. In contrast to the co-fiber 
transmission technology discussed above, the focus here is on 
resource allocation issues in the network layer.  

In [205], [378], a pair of wavelength allocation schemes was 
designed for different channels in a QKD-over-WDM network, 
as depicted in Figs. 26(a) and 26(b). In Fig. 26(a), the fiber’s 
C-band is chosen for both quantum and classical (data) 

channels in order to maintain a low attenuation for high quality 
quantum-signal transmission. The quantum channels can be 
accommodated at high frequencies (i.e., near 1530 nm 
wavelength) to reduce the effect of Raman scattering, whilst 
separating it by using a guard band from the classical (data) 
channels for mitigating the effect of FWM, and for improving 
the channel isolation. By contrast, in Fig. 26(b), the fiber 
O-band is chosen for quantum channels and the fiber C-band is 
chosen for the classical (data) channels in order to guarantee 
sufficient isolation for mitigating their linear crosstalk and the 
associated filtering specification. It should be noted that other 
wavelength allocation schemes can also be used, such as 
placing the quantum channels near the 1550 nm wavelength to 
achieve the lowest possible attenuation of the quantum signals, 
as illustrated in Fig. 26(c).  

In order to improve resource utilization for QKD integration 
into a classical telecommunication network, WDM can be 
combined with TDM by seating multiple time slots for 
accommodating the quantum channels [205], [207]. A static 
routing, wavelength, and time-slot assignment (RWTA) 
problem has been addressed using the classic integer linear 
programming (ILP) model and a heuristic algorithm in [205], 
[377], whereas a dynamic RWTA problem has been solved 
with the aid of heuristic algorithms [207], [211], [379], [380]. 
To improve the achievable secret-key rates in a hybrid 
quantum-classical network, several low-complexity yet 
near-optimal wavelength assignment methods have been 
presented in [381], [382]. In particular, machine learning based 
techniques have been proposed for the near real-time prediction 
of the optimal channel allocation as well as for the accurate 
prediction of quantum parameters, facilitating the reallocation 
of quantum channels and the efficient parameter evaluation to 
ensure excellent performance [372], [383]–[385]. As a further 
advance, core and wavelength/spectrum resource allocation 
solutions have been proposed for MCF-based QKD-over-SDM 
networks [386]–[388], with the objective of maximizing the 
attainable secret-key rate and minimizing the resources 
required. 

The secret key constitutes a unique resource dimension in the 
QKD network, since after it was utilized it must be destroyed. 
The flowchart of a simple secret-key allocation scheme is 
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Fig. 27.  Illustration of the flowchart of a simple secret-key allocation scheme. 

S
M

F
 (

W
D

M
)

1565 1530

Wavelength (nm)

Classical (Data) Channel

Guard 

Band

Quantum 

Channel

 
(a) 

S
M

F
 (

W
D

M
)

1565 1260

Wavelength (nm)

15301360

Quantum 

Channel

Classical (Data) 

Channel

 
(b) 

S
M

F
 (

W
D

M
)

1565 1530

Wavelength (nm)

1550

Quantum 

Channel

Guard 

Band

Classical (Data) 

Channel

Classical (Data) 

Channel

 
(c) 

Fig. 26.  Three schemes of wavelength allocation for different channels: (a) 
C-band for both quantum (near 1530 nm) and classical (data) channels [205]; 
(b) O-band for quantum channels and C-band for classical (data) channels 
[378]; (c) C-band for both quantum (near 1550 nm) and classical (data) 
channels. 



 
 

31 

illustrated in Fig. 27, where the so-called first-fit algorithm of 
[200] is used for secret-key allocation. In the first-fit algorithm, 
all the available secret keys are numbered, where a 
lower-numbered secret key is selected before a 
higher-numbered one. In reality, the first-fit algorithm has been 
commonly utilized in numerous secret-key assignment 
strategies [200], [204], [208], [389], [390] as a benefit of its 
low complexity.   

In order to achieve efficient secret-key resource exploitation, 
the new concept of KoD has been defined to allocate secret 
keys for satisfying the security requirements in a timely on 
demand manner, while an adaptive secret-key assignment 
strategy has been proposed for KoD in [204], which was also 
experimentally demonstrated [365]. Additionally, a heuristic 
algorithm has been designed in [200] to accomplish offline 
secret-key assignment for multiple tenants over a QKD 
network. A comparative study of heuristics and reinforcement 
learning based techniques designed for online multi-tenant 
secret-key assignment over a QKD network has been 
conducted in [389]. A suite of secret-key assignment schemes 
has also been conceived for securing virtual optical networks 
[208], [390], [391], multicast services [392], and passive 
optical networks (PONs) [393].  

D. Routing 

A routing mechanism is necessary when there is no direct 
point-to-point QKD link between two QKD nodes. Such a 
mechanism should be able to provide the required QoS in a 
QKD network [394]. Previously, an extended version of the 
Open Shortest Path First (OSPF) protocol was developed in 
[395] as a routing protocol for the SECOQC QKD network [43], 
[396], in which Dijkstra algorithm was used for finding the 
shortest path between the source and destination QKD nodes. 
Another commonly used routing protocol is the 
destination-sequenced distance-vector routing protocol [397], 
which has also been used in the modeling and simulation of a 
practical QKD network [398]. 

Specifically, Tanizawa et al. [399] discussed the associated 
routing requirements and designed bespoke routing solutions 
for a QKD network. As shown in Fig. 28, these routing 
requirements include choosing the optimal QKD link 
associated with sufficient secret keys, handling both encrypted 
and unencrypted traffic, allowing sufficiently frequent routing 
updates, while consuming no local secret keys through the 
routing protocol control packet exchanges. To elaborate a little 
further, the control packet exchange between QKD nodes is 
required for operating the routing protocol, since it is important 
for path selection during secret-key relaying. However, this 
traffic does not have the secret key information and is not 
required to be encrypted. Hence, it was suggested in [399] that 
no local secret keys are used during the control packet 
exchange, aiming for saving some precious local secret keys. 

The routing solutions designed consist of four components: 1) 
an interface architecture of the QKD node for offering a pair of 
virtual interfaces to connect both with encrypted and 
unencrypted networks; 2) a routing algorithm extending the 

OSPF by considering the amount of secret keys available along 
each QKD link as a routing metric; 3) an Internet Protocol (IP) 
address allocation scheme connecting both encrypted and 
unencrypted interfaces; 4) a routing protocol deployment 
approach allowing the management of routing table entries 
without consuming any secret keys.  

In order to improve the QoS in QKD networks, several 
effective routing mechanisms have been presented [400]–[404]. 
The adaptive stochastic routing algorithms of [400], [401] have 
been designed for hiding the routing information and 
augmenting the secrecy. A multi-path search algorithm [402] 
and a dynamic routing scheme [403] have been designed for 
finding available paths in a QKD network, where the best path 
is selected as the route based on multiple factors. Yang et al. 
[404] proposed a secret-key-aware routing method for finding 
the optimal path in a QKD network, while increasing the 
success rate of key exchange as well as striking a trade-off 
between the secret-key generation and consumption rate on 
each QKD link.  

The classical channel of the QKD link should also be 
considered in the routing decisions of QKD networks since its 
performance can affect the quantum channel and vice versa 
[405]. Mehic et al. [212] introduced a QoS model for QKD 
networks that includes several metrics for characterizing the 
states of the quantum and classical channels as well as of the 
overall QKD links. They also proposed a routing protocol that 
can determine the optimal route in terms of minimum 
secret-key consumption. 

Moreover, the routing entanglement problem of quantum 
networks has recently attracted widespread attention 
[406]–[413]. However, the large-scale entanglement-based 
quantum networks are still not practical in the real world at the 
time of writing.  

E. Protection and Restoration 

To guarantee the uninterrupted distribution of secret keys in 
support of service continuity, a QKD network should be robust 
against both node and link failures. These failures can also be 
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regarded as the physical infrastructure attacks. To construct a 
reliable QKD network and ensure its uninterrupted operation, 
protection and restoration schemes have to be designed.   

The global path protection scheme and rerouting restoration 
scheme of QKD networks [379] are illustrated in Figs. 29(a) 
and 29(b), respectively. In the global path protection scheme, 
two paths (called operational path and protection path) are 
identified and configured for each QKD request in advance. A 
QKD request may opt for using the protection path, when its 
operational path encounters a failure. However, when both the 
operational path and the protection path encounter failures, new 
paths have to be found, such as the restoration path of Fig. 
29(b).  

For handling link failures, the so-called 
key-volume-adaptive dedicated protection and shared 
protection schemes have been conceived for QKD networks 
[414]. The authors demonstrated by simulations that the shared 
protection scheme outperforms its dedicated protection based 
counterpart in terms of its blocking probability and secret-key 
consumption. In order to further improve the secret-key 
resource utilization for the shared protection scheme, Wang et 

al. [415] designed a shared backup path protection scheme for 
QKD networks under a single link failure and demonstrated its 
benefits by simulations.  

As a further development, Chapuran et al. [168] 

demonstrated the feasibility of automated QKD 
resynchronization following a network path reconfiguration 
event using a quantum clock recovery algorithm [167]. 
Moreover, Wang et al. [416] proposed a so-called secret-key 
restoration scheme that involves both one-path, as well as 
multi-path, and time-window-based restoration algorithms to 
recover normal services in the face of a single link failure in a 
QKD network. Their numerical results show that the network 
performance of the three algorithms was best for the 
time-window-based algorithm, followed by the multi-path and 
one-path restoration algorithms. 

To elaborate a little further on the causes of link failure, 
given the sensitivity of quantum signals to various 
physical-layer impairments, an attack on a QKD link can be 
launched, for example by increasing the noise above the 
threshold to disrupt the distribution of secret keys without 
cutting the optical fiber. Such an attack may manifest itself in 
form of a denial of service attack, signal injection attack, etc. 
Hugues-Salas et al. [369], [370] experimentally investigated 
the mitigation of these attacks in a QKD network, achieving 
reliable link failure identification after the attack, followed by 
rerouting a path to recover the connection for a pair of QKD 
devices.  

F. Practical Security 

Given that the most important feature of QKD networks is 
their enhanced security, it is critical that its realistic 
implementation does not jeopardize it.  

On the quantum side, the imperfections of realistic QKD 
devices might cause deviations from the idealized theoretical 
models, which may result in vulnerability to many special 
attacks. The attacks may occur both at the source and detection 
sides of a QKD system, applying photon number splitting [110], 
[111] and phase information [417] attacks to the source, Trojan 
horse attacks [418]–[420] on the source and detection, detector 
blinding and control attacks [421]–[425], and so on. For 
example, the photon number splitting attack on imperfect 
sources has been addressed by the decoy-state method 
[94]–[96], while MDI-QKD [106] can eliminate all detection 
attacks. Indeed, a considerable amount of work has been 
dedicated to reducing the gap between the theory of QKD and 
its corresponding implementations. We refer the reader to a 
recent review [31] for more details on various practical 
vulnerabilities and advanced countermeasures for QKD 
systems. Moreover, Walenta et al. [426] studied the security 
certification of commercial quantum technologies from a 
practical perspective, enabling commercial QKD network 
devices to conform to security standards.  

On the classical side, Salvail et al. [427] proposed a method 
to guarantee the privacy and authenticity of secret keys, where 
some nodes were taken over by an adversary. The proposed 
method has the potential of differentiating between authentic 
and forged keys, but additionally, it can also reveal malicious 
parties in some cases. As a further advance, Cederlof et al. [428] 
analyzed the security effects of using a secret key generated by 
QKD in the current round for authentication in the subsequent 
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round, where a security weakness of authentication was 
discovered and an appealingly simple solution was proposed 
for addressing this weakness. Cho et al. [429] discussed a host 
of practical issues concerning the secure deployment of QKD 
in optical communication systems, and proposed a realistic 
system model as well as practical solutions to tackle the 
associated security issues. In [430], four mixed 
trusted/untrusted relay placement strategies were devised for 
enhancing the security level of QKD deployment over optical 
networks, achieving substantial security level improvements 
compared to the conventional purely trusted relay placement 
strategies. 

In practice, the security of the control plane in a QKD 
network is very important, since the illegitimate disclosure or 
modification of any control/configuration information may 
compromise the entire QKD network. Kitayama et al. [431] 
used the secret keys of a QKD network to encrypt not only the 
user data but also the control signals arriving from the 
generalized multi-protocol label switching (GMPLS) 
controllers, where the OTP method can be utilized for control 
signal encryption, since the control signals tend to be compact. 
In particular, several types of control plane attacks may arise in 
the context of the SDN technique. These attacks and their 
corresponding classical defense techniques have been detailed 
in [357], [432]. With respect to the quantum defense techniques 
designed for protecting SDN from control plane attacks, Cao et 

al. [204] proposed an attractive technique relying on the secret 
keys to enhance the security of control channels in a software 
defined optical network. As illustrated in Fig. 30, by placing a 
QKD node next to the SDN controller and connecting it to 
other QKD nodes via QKD links, the security of control 
channels in a SDN-enabled QKD network can be enhanced 
using the QKD-based secret keys. Furthermore, regarding a 
hybrid combination of quantum and classical security schemes, 
the secret keys derived from QKD can be combined with 
conventional key exchange protocols (e.g., Diffie-Hellman) to 
secure the control plane in SDN and NFV environments [433]. 

G. Cost Optimization 

The escalating cost of nodes and links is regarded as one of 

the major barriers to the practical deployment of QKD 
networks. Hence, cost optimization is essential for QKD 
networks, especially for a QKD backbone network owing to its 
large scale and hence potentially excessive cost [434]. At the 
time of writing, almost all the practical QKD backbone 
networks deployed in the field are trusted relay based QKD 
networks, where two types of QKD nodes are required, namely 
the QKD backbone node (QBN) and the QKD relay node 
(QRN). A QBN acts as the end node (i.e., the source or 
destination node of a QKD request8) for the users but it also 
incorporates the function of QRNs. The QRNs act as the 
intermediate nodes between two neighboring QBNs, which rely 
on trusted relays for QKD distance extension.  

To satisfy the performance requirements of network users at 
a minimum cost, Alléaume et al. [435] introduced several 
analytical models for optimizing the spatial distribution of both 
the QKD nodes and of the QKD links during the QKD network 
deployment phase. They also determined where independent 
optical fibers have to be deployed as QKD links. By contrast, 
deploying QKD over a WDM backbone network is beneficial 
in terms of reducing the deployment difficulty and cost, where 
a certain fraction of wavelength channels in a WDM backbone 
network has to be reserved for QKD links. The cost of 
deploying QKD over a WDM backbone network has been 
discussed in [378], which is mainly determined by the 
following three aspects.  
 Cost of QKD transceivers in QKD nodes: Let CU denote 

the cost of a QKD transceiver (i.e., a transmitter and a 
receiver). The physical distance between a pair of 
neighboring QKD nodes (e.g., a QBN and a QRN, or two 
QRNs) is assumed to be fixed and denoted by D (~80 km). 
The achievable secret-key rate corresponding to the 
physical distance D on a single QKD link is denoted by k. 
The number of QKD transceivers required for a QKD 
request r at a secret-key rate requirement of vr is 

U
r sdr

Lv
N

k D

    
,                              (1) 

where Lsd is the physical distance between a pair of QBNs 
sr and dr. Let R denote the full  set of QKD requests in a 
QKD network. Then, the total number of QKD 
transceivers required in a QKD network is 

U U
R r

r R

N N


 .                               (2) 

 Cost of auxiliary equipment (key manager, optical switch, 

multiplexer, demultiplexer, secure infrastructure, etc.) in 

QKD nodes for QKD networking: The costs of auxiliary 
equipment in a QBN and a QRN are assumed to be fixed 
as CB and CT, respectively. The total number of QBNs in a 
QKD network is denoted by NB. The number of QRNs 
required for a QKD request r is 

 
8The QKD request is defined as a request that has a specific secret-key rate 

requirement between a pair of distant QKD users. 
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Fig. 30.  Illustration of using the QKD-based secret keys to enhance the 
security of control channels in a SDN-enabled QKD network. 
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Then, the total number of QRNs required in a QKD 
network is 

T T
R r

r R

N N


 .                                (4) 

 Cost of QKD links: Two types of channels, i.e., quantum 
and classical channels have to be established as QKD 
links. The cost of QKD links is directly associated with 
the number of quantum and classical channels as well as 
the physical length of QKD links. Let CW denote the cost 
per kilometer of a wavelength channel on a fiber link. The 
physical length of QKD links for a QKD request r is  

W 2r r

sd

v
L L

k
 .                               (5) 

Then, the total required physical length of QKD links in a 
QKD network is 

W W
R r

r R

L L


 .                                (6) 

Based on the above formulation, Cao et al. [378] defined a 
cost-oriented model for deploying QKD over a WDM 
backbone network as follows: 

Total U U B B T T W W
R R R

C C N C N C N C L    ,              (7) 

where CTotal is the total cost of QKD network deployment, 
which is composed of four terms, covering the cost of QKD 
transceivers in all the QBNs and QRNs, the cost of auxiliary 
equipment in all the QBNs, the cost of auxiliary equipment in 
all the QRNs, and the cost of QKD links. Notably, the 
physical-layer parameters such as secret-key rate, physical 
distance, and the layout of QRNs have been incorporated in this 
cost-oriented model. The above equations (1) to (7) correspond 
to the equations (1) to (7) formulated in [378], respectively. In 
the above formulation, the QBNs and some QRNs can be 
shared among different QKD requests (i.e., the components 
related to different requests may be placed at the same node), 
but the components such as QKD transceivers are not shared by 
different QKD requests. This is because the QKD requests are 
independent of each other. 

In [378], two methods, i.e., an ILP model and a heuristic 
algorithm, have been proposed for optimizing the cost of QKD 
network deployment. Specifically, the items used for cost 
optimization of QKD networks are listed in Table XV, where 
three cases are considered, including a rather pessimistic case 
having fixed cost values (Case 1), an optimized case with fixed 
cost values (Case 2), and a dynamic case with flexible cost 
values (Case 3). It should be noted that the final results may be 
highly dependent on these assumed cost values. 

Through numerical simulations, the total QKD network cost 
versus the number of QKD requests in three cases under the 
ILP model, heuristic algorithm, and a benchmark (involving 
random routing and random channel allocation) is illustrated in 
Fig. 31. The ILP model cannot be adopted in Case 3, where the 

cost-oriented model is nonlinear, because the cost values are 
made flexible. It can be observed in Fig. 31 that the heuristic 
algorithm delivers similar results to the ILP model. 
Furthermore, both the ILP model and heuristic algorithm 
significantly outperform the benchmark in Cases 1 and 2. The 
total QKD network cost increases with the number of QKD 
requests in Cases 1 and 2, since the required number of QKD 
network elements becomes larger and the cost values of the 
elements are fixed. In Case 3, the total QKD network cost 
increases non-linearly with the number of QKD requests, 
because the component cost values depend on the total number 
of QKD transceivers required. Hence, the cost optimization of 
the ILP model or heuristic algorithm relative to the benchmark 
in Case 3 is directly related to the assumptions about the 
component cost values. Moreover, Case 2 shows the lowest 
total QKD network cost because the optimized cost values 
based on photonic integration and publicly funded 
development are adopted.  

It is important to note that the above modeling and analysis is 
only one of the QKD network cost optimization options based 
on trusted relays. Depending on the diverse types and 
requirements of QKD networks as well as the different cost 
values, various novel cost optimization solutions for QKD 
networks may be conceived. Specifically, the cost optimization 
of hybrid trusted/untrusted relay based QKD deployment over 
optical backbone networks has been addressed in [436]. 

TABLE XV 
COST VALUES USED FOR COST OPTIMIZATION OF QKD NETWORKS [378] 

 Case 1 Case 2 Case 3 

N
 R 

U  ≥1 ≥1 1 2–2,000 >2,000 

CU (US$) 40,000 10,000 40,000 −15N
 R 

U  + 40,000 10,000 

CB (US$) 30,000 10,000 30,000 −10N
 R 

U  + 30,000 10,000 

CT (US$) 20,000 5,000 20,000 −7.5N
 R 

U  + 20,000 5,000 

CW (US$) 8 5 8 −0.0015N R 

U  + 8 5 
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requests in three cases under the ILP model, heuristic algorithm, and 
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H. Multi-User QKD 

Multi-user QKD networks exhibit an improved cost 
efficiency. Since Townsend et al. [437] first exploited the 
properties of a PON to realize one-to-any QKD in 1994, 
numerous investigations have been dedicated to multi-user 
QKD access networks. By extending the schemes described in 
[437], Phoenix et al. [438] implemented any-to-any QKD in an 
optical network. Moreover, Townsend [136] designed a 
practical scheme for multi-user QKD and demonstrated its 
operation in a PON.  

With respect to different PON techniques, Kumavor et al. 
[439] compared four different PON topologies (including 
passive-star, optical-ring, wavelength-routed, and 
wavelength-addressed bus architectures) in realizing multi-user 
QKD, demonstrating their applicability for serving networks of 
different sizes. The major findings of [439] were that the star 
network supported the lowest number of users, the ring 
topology had the highest key rate for networks with less than 60 
users, the wavelength-routed network was independent of the 
number of users, and the wavelength-addressed bus network 
performed favorably for networks only supporting a few users. 
Based on a wavelength-addressed bus architecture, Kumavor et 

al. [440] implemented and experimentally investigated a 
six-user QKD network relying on a bus topology, where the 
bus was a standard telecommunication fiber with the total 
length of 30.9 km. As a further development, Fernandez et al. 
[441] tested both point-to-point and point-to-multipoint PON 
architectures in the context of multi-user QKD. In [442], 
different implementation options have been critically appraised 
for employment in multi-user QKD relying on optical access 
networks, covering point-to-point Ethernet, Ethernet PON, 
GPON, WDM PON, WDM/TDM PON, etc. Inspired by 
[439]–[442], the numbers of QKD users that can be 
accommodated by diverse PON architectures can be further 
compared and optimized. Meanwhile, a number of studies have 
been carried out for characterizing the different aspects of QKD 
over PONs, such as quantum information to the home [137], 
seamless integration [231], [443], and their security analysis 
[444].  

Elmabrok et al. [445] proposed the practical setups that 
facilitate wireless access to hybrid quantum-classical networks. 
Some other available dimensions, such as the time and code 
domains, have been employed in the investigations of 
time-division multiple access and code-division multiple access 
(CDMA) based multi-user QKD networks [446]. Following the 
principle of CDMA, a quantum spread spectrum multiple 
access scheme has been designed in [447]. 

In particular, a multi-user quantum access network has been 
experimentally demonstrated in [130], which can bring QKD 
closer to practical applications. Several important issues such 
as the associated wavelength assignment [382] and finite-key 
effects [448] have also been investigated in the context of 
quantum access networks. Cai et al. [449] characterized a 
quantum access network supporting peer-to-peer multimedia 
service between optical network units (ONUs), while realizing 
direct quantum and classical ONU-ONU communications with 

an “N:N” splitter. Furthermore, a multi-user QKD network 
based on entanglement has been proposed and theoretically 
studied in [450]. 

When it comes to applications, the novel concept of QaaS 
has been proposed in [201], [366], which allows multiple users 
to apply for dedicated QKD services relying on secret keys 
acquired from the same QKD network infrastructure. On the 
other hand, multi-tenancy is regarded as a cost-effective 
technique of employing secret keys, where each tenant is a 
high-security user who needs secret keys from the QKD 
network infrastructure. The offline multi-tenant key provision 
problem has been addressed in the context of QKD networks by 
upon controlling a secret-key rate sharing scheme by a heuristic 
algorithm [200]. A more advanced online version has been 
optimized by using heuristics and reinforcement learning [389]. 
Finally, a multi-tenant metropolitan QKD network has been 
described and experimentally characterized in [202]. 

VII.  STANDARDIZATION EFFORTS 

The industrial-scale roll-out of QKD networks still faces a 
lot of challenges, where standardization plays a crucial role in 
terms of ensuring the compatibility of components produced by 
different global suppliers. Motivated by the QKD advantages, 
multiple standardization bodies (e.g., ETSI, ITU-T, ISO/IEC, 
IETF, IEEE, and CSA) are working on QKD standards. Table 
XVI summarizes the standardization efforts in QKD and the 
Qinternet from these groups. 

A. ETSI 

The ETSI industry specification group for QKD (ISG-QKD) 
was established in 2008, and has been as instrumental in 
promoting QKD standardization as ITU-T. Specifically, ETSI 
ISG-QKD has developed a series of group specifications and 
reports for QKD. Länger et al. [484] detailed the intention of 
establishing the ETSI ISG-QKD, which is essentially the 
creation of universally accepted QKD standards. Weigel et al. 
[485] further emphasized the need for QKD standardization 
and highlighted the ETSI approach to standardizing QKD. In 
Table XVI we listed different group reports and specifications 
at a glance. 

B. ITU-T 

Since 2018, the ITU-T Study Group 13 (SG13) and Study 
Group 17 (SG17) have been working on new study items on the 
standardization of QKD networks, as listed in Table XVI . In 
October 2019, the first QKD-related ITU-T recommendation 
Y.3800 [65] was published to provide an overview on networks 
supporting QKD, covering the relevant conceptual structure, 
layered model, and basic functions facilitating the 
implementation of QKD networks. Table XVI lists a set of 
ITU-T recommendations that have reached different state of 
maturity. 

Moreover, in order to provide a collaborative platform for 
pre-standardization aspects of quantum information technology 
with an emphasis on networks, the ITU-T Focus Group on 
Quantum Information Technology for Networks (FG-QIT4N) 
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was established in September 2019. 

C. ISO/IEC 

The ISO/IEC JTC 1/SC 27 is a standardization subcommittee 

operating under the auspices of the Joint Technical Committee 
1 (JTC 1) of ISO and IEC, contributing to the development of 
standards for the protection of information as well as 

TABLE XVI  
SUMMARY OF STANDARDIZATION EFFORTS IN QKD AND THE QINTERNET 

Group Serial Number Subject Type 
Year/ 

Status 
Ref. 

ETSI 

GS QKD 002 QKD use cases Group specification 2010 [451] 

GR QKD 003 QKD components and internal interfaces Group report 2018 [213] 

GS QKD 004 QKD application interface Group specification 2020 [221] 

GS QKD 005 QKD security proofs Group specification 2010 [452] 

GR QKD 007 QKD vocabulary Group report 2018 [453] 

GS QKD 008 QKD module security specification Group specification 2010 [454] 

GS QKD 011 Optical component characterization for QKD systems Group specification 2016 [455] 

GS QKD 012 Device and communication channel parameters for QKD deployment Group specification 2019 [66] 

GS QKD 014 Protocol and data format of REST-based key delivery API Group specification 2019 [222] 

GS QKD 015 QKD control interface for SDN Group specification 2021 [217] 

GS QKD 010 Protection against Trojan horse attacks in one-way QKD systems Group specification Drafting [456] 

GS QKD 013 Characterization of optical output of QKD transmitter modules Group specification Drafting [457] 

GS QKD 016 Common criteria protection profile for QKD Group specification Drafting [458] 

GR QKD 017 QKD network architectures Group report Drafting [459] 

GS QKD 018 QKD orchestration interface of SDN Group specification Drafting [460] 

GR QKD 019 Design of QKD interfaces with authentication Group report Drafting [461] 

ITU-T 

Y.3800 Overview on networks supporting QKD Recommendation 2019 [65] 

Y.3801 Functional requirements for QKD networks Recommendation 2020 [462] 

Y.3802 QKD networks - Functional architecture Recommendation 2020 [463] 

Y.3803 QKD networks - Key management Recommendation 2020 [297] 

Y.3804 QKD networks - Control and management Recommendation 2020 [464] 

Y.3805 QKD networks - SDN control Recommendation 2021 [218] 

Y.3806 QKD networks - Requirements for QoS assurance Recommendation 2021 [465] 

X.1702 Quantum noise random number generator architecture Recommendation 2019 [466] 

X.1710 Security framework for QKD networks Recommendation 2020 [467] 

X.1712 
Security requirements and measures for QKD networks - Key 
management 

Recommendation 2021 [468] 

X.1714 Key combination and confidential key supply for QKD networks Recommendation 2020 [469] 

Y.3807 QKD networks - QoS parameters Recommendation Drafting [470] 

Y.3808 Framework for integration of QKD network and secure storage network Recommendation Drafting [471] 

Y.3809 QKD networks - Business role-based models Recommendation Drafting [472] 

Y.QKDN-qos-fa Functional architecture of QoS assurance for QKD networks Recommendation Drafting [473] 

X.sec-QKDN-tn Security requirements and designs for QKD networks - Trusted node Recommendation Drafting [474] 

X.sec_QKDN_intr
q 

Security requirements for integration of QKD networks and secure 
network infrastructures 

Recommendation Drafting [475] 

X.sec_QKDN_CM Security requirements for QKD networks - Control and management Recommendation Drafting [476] 

X.sec_QKDN_AA 
Authentication and authorization in QKD networks using quantum safe 
cryptography 

Recommendation Drafting [477] 

ISO/IEC 
CD 23837-1 

Security requirements, test and evaluation methods for QKD – Part 1: 
Requirements 

Standard Drafting [478] 

CD 23837-2 
Security requirements, test and evaluation methods for QKD – Part 2: 
Evaluation and testing methods 

Standard Drafting [479] 

IETF 
draft-irtf-qirg-prin.. Architectural principles for a Qinternet Internet-draft 2021 [480] 

draft-irtf-qirg-qua.. Applications and use cases for the Qinternet Internet-draft 2021 [481] 

IEEE P1913 Software-defined quantum communication Standard Drafting [482] 

CSA N/A Introduction to QKD Research artifact 2015 [483] 
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information and communications technology (ICT). In 2017, a 
study period project was launched in ISO/IEC JTC 1/SC 27 
targeting the security requirements, test and evaluation 
methods of QKD. This project has reached fruition in 2019, 
based on which a new work item was approved and initiated to 
develop two-part standards, specifying both the security 
requirements of QKD [478], as well as the security evaluation 
and testing methods [479]. Both parts are under development at 
the time of writing. The standard [478] aims for identifying the 
potential attacks from the perspective of theoretical model 
violation, and for characterizing the overall technical 
requirements, while the standard [479] will provide support for 
validating the conformity of the security requirements based on 
the expected security assurance requirements. 

D. IETF 

The IETF Quantum Internet Research Group (QIRG) was 
established in 2018 to promote the research on Internet-scale 
quantum communications. The Internet-draft [480] introduces 
some of the basic architectural principles of the Qinternet, and 
outlines the vision of fundamentally enhancing the Internet 
technology by enabling ultimately secure quantum 
communications between any two points in the world. As a 
further advance, the Internet-draft [481] gives an overview of 
promising applications to be supported by the Qinternet.  

E. IEEE 

In 2016, IEEE launched a working group to develop a new 
standard for software-defined quantum communication [482]. 
This standard intends to specify a software-defined quantum 
communication protocol for supporting the configuration of 
quantum-enabled endpoints in a communication network. Such 
a protocol resides at the application layer of the common 
Transmission Control Protocol (TCP)/IP model, which will 
facilitate future integration with the SDN and OpenFlow 
concepts. The standard [482] will also define some commands 
for quantum device configuration to enable the control of the 
transmission, reception, and operation of quantum states. The 
main objective is to manage the parameters that describe the 
preparation, measurement, and readout of quantum states. 

F. CSA 

In 2014, the CSA Quantum-Safe Security Working Group 
(QSSWG) was launched to identify quantum‐safe methods for 
protecting data across networks in the industrial sector. The 
goal of this working group is to provide support for the 
quantum‐safe cryptography community in their efforts to 
protect sensitive data. QKD is one of the salient quantum-safe 
methods considered by this working group [483].  

VIII.  ON THE ROAD TO THE QINTERNET: APPLICATION 

SCENARIOS 

The QKD network forms a stepping stone on the road to the 
Qinternet, which plays an essential role in providing long-term 
security for numerous applications. In this section, we discuss 
some promising application scenarios relying on QKD 

networks. 

A. First Stage of the Qinternet 

The QKD networks relying on trusted relays have evolved 
from the lab to preliminary real-world applications. It is 
important to note that these networks only constitute the first 
stage of the Qinternet [50], as portrayed in Fig. 32. The first 
stage differs significantly from the evolutionary stages, which 
cannot achieve the end-to-end transmission of quantum states 
owing to the absence of quantum repeaters. This stage may 
incorporate some useful evolutionary components for later 
stages. QKD networks reaching this stage can be upgraded by 
replacing some trusted relays with untrusted relays relying on 
MDI-QKD protocols [430], [436]. Finally, a QKD network 
relying on quantum repeaters would reach the second stage of 
the Qinternet featured in Fig. 32. The higher stages include all 
the functionalities of the previous stages, hence the QKD 
network can also be regarded as a subset of the future 
Qinternet. 

B. QKD Applications in ICT Systems 

Similar to the applications of classic key distribution 
algorithms routinely employed in ICT systems, QKD can be 
used in conjunction with well-established protocols to build 
high-security ICT systems. Following the classic TCP/IP 
model, these typical protocols are attached to different layers 
(i.e., link, Internet, transport, and application layers from 
bottom to top), as illustrated in Fig. 33. By contrast, no 
universal network stack is available for the Qinternet at the time 
of writing, which still requires further specifications. Based on 
the group specification ETSI GS QKD 002 [451], several 
integration possibilities of QKD into the different layers of ICT 
systems are described as follows.  

1) Link Layer: QKD may be utilized to provide secret keys 
for the point-to-point protocol (PPP) of [486] and for the IEEE 
802.1 media access control security (MACsec) [487]. The PPP 
is widely used for connecting a pair of nodes over a 
point-to-point link in the operational computer network. The 
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Fig. 32.  Stages in the development of a Qinternet [50]. 
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encryption control protocol (ECP) of [488] is in charge of 
configuring and enabling the encryption functionality in PPP, 
while the key agreement may rely on QKD. The IEEE 802.1 
MACsec is capable of supporting a connectionless service, 
which offers data confidentiality, integrity, and authenticity for 
authorized devices connecting to a local area network or 
interconnecting local area networks. Explicitly, the MACsec 
key agreement protocol may be replaced by QKD. Additionally, 
a point-to-point QKD link that connects a pair of QKD devices 
can be integrated with a link encryptor for creating a 
QKD-based link encryptor, which can use the symmetric secret 
keys generated by QKD in symmetric-key cryptosystems for 
encrypting the tele-traffic on communication links.  

2) Internet Layer: QKD may also be readily used as a part 
of the Internet Protocol Security (IPsec) [489]. The IPsec is a 
network protocol suite that authenticates and encrypts the IP 
packets of data for securing communications over an IP 
network, which is commonly adopted in VPNs. In the IPsec 
protocol suite, Internet Key Exchange (IKE) [490] is one of the 
pivotal protocols utilized for establishing a security association. 
Conventionally, IKE employs a Diffie-Hellman key exchange 
protocol for setting up a shared session’s secret keys. By 
introducing QKD, IKE may conveniently invoke the shared 
secret keys derived from QKD for IPsec payload encryption 
[491].  

3) Transport Layer: QKD may also be seamlessly 
integrated with the transport layer security (TLS) protocol of 
[492] and its predecessor, namely the secure sockets layer (SSL) 
protocol [493]. The TLS and SSL are popular cryptographic 
protocols capable of providing end-to-end security for secure 
communications over a computer network. Before a client and 
a server can start communicating across a network using the 
TLS/SSL protocol, they must securely exchange or agree upon 
a secret key used for encrypting their data. Typically the 
conventional key exchange/agreement approaches (e.g., RSA 
and Diffie-Hellman) are utilized in TLS/SSL. In contrast to the 

conventional classical-domain approaches, QKD holds the 
promise of supplying the secret keys in a more secure fashion in 
the future. Hence, QKD may be used in TLS/SSL for 
enhancing the security of message authentication and 
encryption.  

4) Application Layer: Numerous applications can use the 
secret keys generated by QKD for user authentication, message 
authentication, and service (e.g., voice-only telephone 
communication and video conference) encryption. Moreover, 
QKD may also be readily utilized in conjunction with the 
Diffie-Hellman protocol within secure shell (SSH) sessions for 
high-security service deployment [433]. 

C. Application Areas 

By amalgamating QKD networks and the existing ICT 
systems, a variety of QKD-protected applications have 
emerged in diverse many areas. For example, a QKD network 
is capable of securing the critical links of financial institutions 
and government agencies. Furthermore, a QKD link has been 
deployed in sporting events such as the 2010 FIFA World Cup 
[169]. Some typical application areas of QKD networks are 
depicted in Fig. 34 and described in the following paragraphs.  

1) Finance and Banking: The financial industry, especially 
the banking industry, handles a significant amount of highly 
sensitive and valuable data, such as transactions, client data and 
proprietary information, and so on. QKD enables financial and 
banking institutions to protect their data for ultimate and 
future-proof security. In 2004, the first QKD-secured bank 
transfer took place between the headquarters of an Austrian 
bank and the Vienna City Hall [494], where secret keys were 
distributed on demand between the two sites via a QKD system. 
In [495], a scenario of using QKD within IPsec for securing the 
critical financial transactions in Switzerland was described and 
analyzed. The financial institutions in Switzerland have also 
employed commercial QKD systems for securing their 
networks for disaster recovery. Based on the existing QKD 
networks, many Chinese banks have implemented 
QKD-secured data transfer as well as the online banking and 
transactions for enterprise users [46], [185]. Considering that 
authentication in online banking systems is potentially 
vulnerable to attacks such as phishing, QKD can be adopted to 
enhance the standard authentication in online banking systems 
[496]. At the time of writing, the Dutch bank is preparing to use 
MDI-QKD for providing ultra-secure connections. 

2) Governments and Defense: Of all entities, governments 
and defense agencies have the longest-lasting data security 
requirements, stretching for decades in the case of official 
secrets. QKD can offer long-term data security for 
governments and defense agencies to guarantee their data 
sovereignty. Generally, a dedicated security system (e.g., VPN) 
is utilized in a government or defense agency to provide a high 
level of data confidentiality, integrity, and authenticity for their 
communications systems. In 2007, the Swiss government 
successfully applied QKD for securing a dedicated line used to 
count the ballots of national elections [497]. In [498], a 
QKD-based voting scheme protected against 
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man-in-the-middle attacks has been presented. Furthermore, a 
QKD metropolitan network constructed in Jinan [30], [46], 
[153] has been used by numerous government employees to 
protect their secrets. Similarly, a government QKD network is 
being implemented to secure intra-governmental 
communications in the Australian capital Canberra. Finally, 
several studies have reported on the application of QKD for 
enhancing the security of VPNs [499], [500].  

3) Cloud and Data Centers: Huge amounts of highly 
confidential data are stored in the cloud and data centers. As 
more and more organizations use the cloud and data centers to 
backup, store, and recover data, ensuring data privacy and 
security has become of paramount importance. Given that 
conventional security solutions will soon become vulnerable to 
the threats posed by quantum computing, QKD has the 
potential of increasing the security of cloud data protection and 
data center interconnection. In the Netherlands, a QKD link has 
been demonstrated to secure the data transfer between the 
Siemens data centers in The Hague and Zoetermeer [501], 
while KPN has implemented end-to-end QKD in its network 
between the KPN data centers in The Hague and Rotterdam 
[502]. In China, the Beijing-Shanghai QKD network [46], [181] 
has been used for securing the data center backup between 
Beijing and Shanghai. In the sector of corporate cloud security 
applications, several companies such as Acronis and Alibaba 
are also applying quantum-safe encryption to cloud data 
protection [503]. With respect to the application of QKD for 
cloud computing, a series of problems have been addressed, 
covering access control [504], authentication [505], data and 
privacy security [506], cloud containers [507], as well as cloud 
storage and data dynamics [508].   

4) Critical Infrastructures: A critical national infrastructure 
supports the essential services that underpin society, which 

contains a number of sectors, such as energy, transport, and 
telecom. The threats (e.g., malicious data tampering and service 
outages) inflicted upon the critical infrastructures may cause 
economic damage as well as disruption to both corporate and 
national services. As a remedy to these threats, QKD holds the 
potential of providing long-term protection and forward 
secrecy for the critical infrastructures. The application of QKD 
networks for protecting the energy grid is being investigated by 
several institutions, such as the State Grid Corp of China as 
well as the Oak Ridge and Los Alamos National Labs, with the 
objective of ensuring safe and stable operation of the entire 
energy grid. Meanwhile, some telecom operators and service 
providers (e.g., Telefónica, China Telecom, and British 
Telecom) around the world are studying the feasibility of 
integrating QKD systems with the existing fiber infrastructures 
for securing data transfer across their telecoms networks. 
Moreover, QKD can be readily utilized for enhancing the 
security of aeronautical telecommunication networks [509]. An 
architecture of network-centric quantum communications has 
been applied for the protection of critical infrastructures, as 
detailed in [198], whereas the application of QKD for 
multi-source data security protection of the smart grid has been 
discussed in [510].  

5) Healthcare: Healthcare organizations also require highly 
reliable networks for the transmission of sensitive information, 
such as patient records, including names, addresses, dates of 
birth, social security records, and clinical records. However, 
without protection, the transmission of sensitive information 
across networks is at risk from cyber-attacks. Such 
cyber-attacks may affect patients (e.g., threatening their 
personal information and health) and cause significant financial 
and credit losses for healthcare organizations. In the near future 
era of quantum computing, QKD can be used by healthcare 
organizations for protecting their data in both the current and 
future security landscape. To protect the sensitive data relevant 
to human genomes and health throughout its lifetime, a storage 
system based on QKD has been presented in [511], which has 
exceptional storage longevity. As a further application of QKD 
for offering both storage and access security concerning 
personal health records in a cloud environment has been 
investigated in [512]. In 2020, Toshiba and ToMMo reported 
on the successful demonstration of real-time transmission of 
genome sequence data secured by QKD [513], validating the 
practical applications of QKD not only in the fields of genomic 
research and but also in genomic medicine.  

6) Space and Mobile Applications: Space and mobile 
applications that enable multiple users to seamlessly access 
networks can also benefit from the ultimate future-proof 
security provided by QKD. Accordingly, the application of 
QKD is promising to cover the entire globe, including both 
fiber as well as wireless terrestrial and satellite networks. With 
respect to space communications, QKD can be adopted for 
securing access to a satellite, as well as for communications 
between ground stations, and for satellite-to-satellite 
communications [514]. In this regard, a series of projects 
dedicated to space-based quantum communications have been 
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announced in [196]. Moreover, an intercontinental video 
conference was held between China and Austria [48], relying 
on the combination of a satellite-based QKD network with 
fiber-based QKD metropolitan networks. As a further 
development, the application of QKD for securing smartphones 
in a multiuser mobile network has been implemented by 
harnessing the Tokyo QKD network [206], [511], [515]. The 
integration of QKD into wireless networks has been analyzed 
in [516], whereas a QKD system using optical wireless 
communication links for telephone networks has been studied 
in [517]. In particular, a commercial QKD-enhanced mobile 
phone has been developed by QuantumCTek in collaboration 
with ZTE [518], while China Telecom and QuantumCTek are 
jointly promoting the development of quantum encrypted 
phone calls relying on a special SIM card and smartphone app 
[519]. From the perspective of mobile network infrastructures, 
an experiment demonstrating the feasibility of QKD-secured 
inter-domain fifth generation (5G) service orchestration has 
been performed [520], while a field trial of dynamic QKD 
networking relying on the Bristol city 5GUK test network has 
been reported on in [127]. In [521], QKD-assisted 5G network 
slicing has been demonstrated. Moreover, a QKD network 
testbed is being developed in Eindhoven to provide quantum 
encryption as a service on demand for maintaining ultimate 
end-to-end security, which will have connections both to 
optical access networks and to 5G testbeds [138].  

IX.  FUTURE RESEARCH DIRECTIONS 

This survey paves the way for the interdisciplinary 
cross-community dialogue on architecting the Qinternet, and 
reveals that QKD networks have a huge potential in terms of 
providing future-proof security for compelling applications and 
open interesting new perspectives. In this section, we discuss a 
range of open topics on QKD networks and beyond for future 
research, as illustrated at a glance in Fig. 35.  

A. QKD Network Itself 

In addition to the above subjects, there are numerous open 
challenges in the research and popularization of QKD networks, 
some of which are outlined as follows. 

1) Network Coding: Network coding [522] has been widely 
analyzed in the context of classical networks, but a range of 
specific problems should be addressed to enable network 
coding to be exploited in QKD networks. The reliance on the 
trusted relays in QKD networks can be alleviated with the aid 
of network coding [299], which can assist in multicasting secret 
keys from multiple transmitters to multiple receivers [523]. 
This would pave the way for realistic public multi-user QKD 
systems [524]. In particular, a novel network coding paradigm, 
termed as quantum network coding, has been proposed in [525], 
but most studies still only focus on its theoretical aspects 
[526]–[530]. A particularly promising area of research is to 
conceive solutions for all low trust-levels of the relays, such as 
the trusted relays seen in Fig. 7, as well as for different quantum 
memory requirements in supporting the evolutionary 
development of the Qinternet.  

2) Performance Enhancement: To provide forward secrecy 
and long-term protection for more and more users across the 
future Qinternet, the performance of QKD networks has to be 
enhanced. Extending the distance and increasing the secret-key 
rate of QKD networks would require the invention of new 
QKD protocols and devices. Notably, the TF-QKD [107] and 
PM-QKD [108] protocols hold the promise of overcoming the 
rate-distance limit of the existing point-to-point QKD protocols, 
whereas chip-based QKD combined with integrated photonic 
devices enables the large-scale practical deployment of QKD 
[329]. Both the recently invented QKD protocols and devices 
need further research for facilitating their implementation in 
practical QKD networks. On the theoretical front, the 
mathematical models of QKD networks also require further 
investigations in order to accurately describe and evaluate the 
performance of practical QKD networks having heterogeneous 
topologies and QKD protocols [531], [532]. Specifically, a 
sophisticated QKD network that supports the reconfiguration 
of devices to support diverse QKD protocols will potentially 
improve the agility and flexibility as well as compatibility of 
QKD networks [533]. Moreover, the integration of QKD with 
existing optical networks requires performance enhancements 
to facilitate the roll-out of QKD networks [436], while the 
family of satellite-constellation based QKD networks also has 
to be further explored for constructing global QKD networks. 

3) Testing and Verification: The main characteristics of 
practical QKD networks have been reported by the QKD 
device vendors and network operators themselves. However, 
hitherto no official testing and verification schemes specific to 
QKD networks have been devised. Walenta et al. [426] 
described a suite of alternative options to enable QKD network 
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Fig. 35.  Open topics on QKD networks and beyond for future research. 



 
 

41 

devices to be compliant with well-established security 
certification standards. The group specification ETSI GS QKD 
011 [455] has outlined the measurement methods to be used for 
various parameters of the individual components in QKD 
systems. Naturally, guaranteeing the validity and impartiality 
of testing and verification for QKD networks is a vitally 
important issue. Hence widely ratified uniform testing and 
verification standards, instruments, and platforms have to be 
developed for different QKD networks. Ideally, an independent 
evaluation facility should be established for conducting tests on 
QKD networks under different conditions and validate the 
functionalities claimed by the network providers. 

4) Commercialization: At the time of writing, a variety of 
commercial QKD devices are available and many practical 
QKD networks have been deployed. Nonetheless, the 
establishment and commercialization of QKD networks using 
commercial QKD devices still face countless obstacles. Battelle 
[534] has compared custom-built and commercial QKD 
systems in a controlled laboratory environment, with the 
objective of characterizing the performance attained in 
real-world metropolitan and long-haul environments. The 
family of handheld mobile QKD devices [535] still requires 
further research for commercialization. Moreover, the 
implementation security of QKD networks is one of the major 
obstacles in the way of wide-spread commercialization, since 
an attacker might maliciously use the imperfections of the QKD 
network to paralyze it. Thus, sophisticated countermeasures 
should be continuously invented and updated to guard against 
the implementation loopholes in order to widely roll out secure 
QKD networks in commercial public environments.  

B. QKD Network Integration with Other Technologies 

We briefly mention here some of the research topics on QKD 
network integration with other advanced technologies, which 
are of particular interest to the multidisciplinary research and 
engineering communities.   

1) Post-Quantum Cryptography: Besides QKD networks, 
post-quantum cryptography is another potential approach to 
provide quantum-safe security [14]–[19], which relies on 
algorithms that have been proven to be safe against known 
quantum attacks. Given that the post-quantum algorithms are 
implemented entirely in software, post-quantum cryptography 
has the advantage of being compatible with existing security 
platforms. In reality, QKD currently cannot replicate all the 
functions of conventional cryptosystems. The post-quantum 
cryptography and QKD solutions constitute a pair of parallel 
research directions, neither of which has yet found widespread 
application in practice. In the immediate future, post-quantum 
cryptography is expected to be integrated with QKD [27], [536] 
for constructing an intrinsically amalgamated security platform 
for quantum-safe cryptosystems.  

2) Blockchain: A blockchain constitutes a distributed and 
public ledger platform, which promotes reaching a consensus 
in a large decentralized network of parties who do not trust each 
other. Blockchain ledgers may consist of almost anything of 
value, such as identities, loans, land titles, and logistics 

manifests. One of the most prominent applications of 
blockchain is cryptocurrency, e.g., Bitcoin [537]. Although 
blockchain is traditionally considered secure, it is vulnerable to 
attacks from quantum computers [538]. Several studies have 
focused on post-quantum blockchain solutions [539]–[541] 
conceived for securing the blockchain with the aid of 
post-quantum cryptography. On the other hand, QKD is a 
promising technique of tackling the special challenges facing 
blockchain in the quantum era. The feasibility of establishing a 
quantum-safe blockchain platform based on QKD for 
providing authentication has been demonstrated in an urban 
QKD network [542]. Furthermore, a framework of 
quantum-secured permissioned blockchain relying on adopting 
a QKD-based digital signature scheme has been presented in 
[543]. Therefore, how to integrate QKD networks with 
blockchain to build a highly secure blockchain platform has 
become an inspirational research topic.  

3) Internet of Things: The Internet of Things (IoT) is 
constituted by a giant network of connected things or objects, in 
which all physical objects are connected to the classical 
Internet and exchange data through network devices or routers. 
The IoT will become an integral part of our daily lives in the 
near future. However, many serious concerns have been raised 
about its security and privacy risks. Indeed, a highly robust 
cryptosystem is required for IoT. The post-quantum IoT 
concept has been envisioned by incorporating post-quantum 
cryptography into the IoT for securing IoT systems against the 
impending known attacks by quantum computing, which has 
become an active area in IoT research [544]–[551]. By contrast, 
the quantum IoT combining quantum cryptography (especially 
QKD) with the IoT requires more research attention, given that 
it is in its infancy [552]–[555]. The integration of QKD 
networks with IoT provides a solid foundation for securing the 
IoT in the quantum world.  

4) Wireless Networks: To date, most practical QKD 
networks have used wired links (i.e., optical fibers) and nodes 
at fixed physical locations. In addition to quantum-assisted 
wireless communications that exploit the computing power 
offered by quantum computing to improve the performance of 
wireless systems [556], some preliminary studies suggested 
that QKD is capable of providing a high level of security for 
users and services in next-generation wireless networks [127], 
[138], [520], [557]–[559]. Inspired by the progress in the field 
of free-space QKD and mobile terminals, such as 
quantum-aided satellites [75] and quantum-aided drones 
[560]–[562], wireless/mobile QKD has become a valuable 
research direction. For example, the feasibility of wireless 
QKD in indoor environments has been studied by the authors of 
[563]. Additionally, the feasibility of QKD operating in the 
Terahertz regime over short distances has also been explored 
[564]. In reality, QKD is capable of replacing classical key 
negotiation algorithms (e.g., Diffie-Hellman algorithm [10]) 
used in wireless scenarios such as IoT and mobile. Both offline 
and online secret-key generation using QKD are possible for 
wireless networks. The former option has been reported in 
[518], [519]. More concretely, a microSD can access the QKD 
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network offline through a secret-key charger and be installed in 
the mobile phone or IoT device. Then the secret keys in the 
microSD can be used for securing wireless communications. 
On the other hand, online secret-key generation demands 
further research on QKD over wireless channels, since it is still 
in its infancy. 

C. Beyond QKD Networks 

Beyond practical QKD networks, we turn our attention to 
future quantum networks that have not as yet been rolled out in 
practice and require further cutting-edge research. 

1) Entanglement-Based QKD Networks: Entanglement is 
one of the most extraordinary features in the quantum world 
[565], with many applications in the field of quantum 
information science, such as QKD and quantum teleportation 
[566]. Entanglement-based QKD has bright prospects for 
future applications, since it has the potential of providing DI 
security potentially leading to a global quantum repeater based 
QKD network. At the time of writing, only a handful of 
entanglement-based QKD experiments have been carried out, 
as exemplified by optical fiber [567], free space [568], and 
satellite [324] based studies. Moreover, entanglement 
distribution in optical networks has been studied theoretically 
in [569] and experimentally demonstrated in [570]. The 
feasibility of entanglement-based metropolitan QKD networks 
has been confirmed by the field trial of [165]. Despite the 
technical advances in entanglement-based networks 
[571]–[573], further long-term efforts are required for a fully 
entanglement-based QKD network to reach a commercial level 
of maturity for practical services. The essential hardware such 
as quantum processors and quantum memory must be further 
developed in support of fully entanglement-based QKD 
networks.  

2) Quantum Teleportation: Quantum teleportation [566] 
enables unknown quantum states to be faithfully transferred 
between distant nodes over long distances in a network. 
Long-distance quantum teleportation underlies the realization 
of global quantum communications and large-scale quantum 
networks [37], [574]. The experiments based on long-distance 
quantum teleportation through both optical fiber and free space 
have been reviewed in [575]. Quantum teleportation has also 
been demonstrated both in the context of metropolitan 
networks [576], [577] and quantum satellites [578]. Although a 
number of technologies have been developed for quantum 
teleportation implementations in quantum networks [135], 
[575], [579], the future progress in real-world applications of 
reliable long-distance quantum teleportation is required.  

3) Quantum Secure Direct Communication: In addition to 
QKD and quantum teleportation, quantum secure direct 
communication (QSDC) [580], [581] is another extremely 
promising branch of quantum communication, in which secret 
messages are transmitted directly over a quantum channel 
without key distribution. The secure direct nature of QSDC 
makes it an important cryptographic primitive for constructing 
the protocols of quantum direct secret sharing [582], [583], 
quantum signature [584], and quantum dialogue [585], [586]. 

Numerous promising QSDC protocols have been proposed 
[580], [587]–[590], some of which have also been 
experimentally implemented [591] and demonstrated in QSDC 
networks [592]. To elaborate a little further, apart from its 
ultimate security, the convincing benefit of QSDC is that it is a 
truly quantum-domain protocol. 

4) Quantum Internet: QKD has many applications over the 
classical Internet [593], [594]. In order to accomplish some 
tasks that are impossible by using purely classical information 
within the classical Internet, a vision of the Qinternet [51] has 
been presented, which can interconnect quantum information 
processors through quantum channels for supporting radical 
applications that are out of reach for the classical Internet. A 
technical roadmap for developing the full-blown Qinternet has 
been proposed in [50], where the initial developmental stage is 
the construction of QKD networks. In recent years, the 
Qinternet has attracted more and more research attention [55], 
[68], [406], [408], [530], [595]–[600]. Given that the Qinternet 
is still in its infancy and it is difficult to predict all its 
applications, substantial further research is required for making 
the Qinternet a reality. Suffice to say however that before 
large-scale quantum computers become available, the Qinternet 
would allow us to construct parallel quantum computers linked 
up by it.  

X. DESIGN GUIDELINES AND A BRIEF SUMMARY  

A. Trade-Offs in QKD Networks 

As a communication network capable of providing secret 
keys as a service, QKD networks also have some characteristics 
reminiscent of those of classical communication networks, 
such as modulation, transmission, detection, and 
post-processing. Accordingly, it has to comply with the basic 
requirements of flexible expansion, cost efficiency and 
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component compatibility. However, the services provided by 
QKD networks differ from those of classical communication 
networks in that they provide random secret keys rather than 
conveying classical messages. As a result, QKD networks also 
have to meet many secret key generation requirements for 
maintaining a high security level, in support of cryptographic 
applications. As shown in Fig. 36, the holistic design of QKD 
networks has to take the following fundamental requirements 
into consideration. 
 Availability: The QKD network relies on an adaptive API 

[222] that can deliver the requested secret keys to multiple 
users. It also has to use the secret keys produced to 
provide a security guarantee anywhere and anytime for 
various ICT applications in numerous fields [451]. 

 Reliability: The QKD network has to support protection 
and restoration schemes [414], [416] that are robust to 
node or link failures, where prompt and accurate fault 
localization and recovery should be provided to ensure 
service continuity without eroding the user experience. 
Moreover, it has to maintain long-term stability [45], [180] 
so that the secret keys can be produced reliably.  

 Flexibility: The QKD network has to be flexible enough to 
fulfil the diverse requirements of users [204]–[207], [601], 
[602], in terms of offering differentiated QoS [212] and 
flexible charging policies. It also has to be capable of 
supporting flexible control and management of the entire 
network, for example by using SDN techniques [126], 
[127], [163]. 

 Scalability: The QKD network is required to support 
smooth network expansion, upgrade, and reconfiguration 
[168], [241] according to the needs of its growing user 
population. It also has to have the capability of supporting 
diverse network topologies, such as the ring [47], [155], 
star [143], [148], [150], [158] and mesh [127], [157] 
structures of short-range, metropolitan and long-haul 
QKD networks. 

 Security: The QKD network is expected to adopt QKD 
protocols having strict security proofs [28], [33], [452], 
and support efficient countermeasures against quantum 
hacking attacks [31], whilst complying with the relevant 
security standards and certifications. 

 Efficiency: The QKD network has to support efficient 
end-to-end QKD-based connections [603], physical-layer 
resource scheduling [377], and secret-key assignment 
[200] according to diverse user requirements and network 
loads. Specifically, it is expected to have a high secret-key 
throughput and low latency to fulfil the demanding 
security requirements of users.  

 Compatibility: Ideally, it should support the co-fiber 
transmission of the quantum and classical signals [47], 
[127], [128], [178], [182] in order to reduce costs. The 
pervasive legacy networks can provide abundant fiber 
resources for QKD networks, hence integrating QKD with 
legacy networks is one of the top priorities in facilitating 
the deployment and increasing the popularity of QKD. 
The long-term evolution of a QKD network should also be 

able to accommodate hitherto unknown new 
cryptographic functions and quantum technologies, while 
supporting backwards compatibility with the existing 
infrastructure. 

 Interoperability: The QKD network must be able to 
accommodate multi-vendor QKD devices and networking 
devices [43], [44]. Specifically, it should be capable of 
achieving interoperability with heterogeneous devices 
developed by different vendors. With the evolution of 
QKD protocols and devices, a large-scale QKD network 
will consist of multi-protocol QKD systems in the future, 
where various QKD protocols may be used in different 
QKD systems. Hence, it is highly desirable for QKD 
networks to achieve interoperability of different QKD 
protocols. 

B. Design Guidelines 

All stages of the Qinternet’s evolution introduced in Section 
VIII  are subject to the generic trade-offs briefly touched upon 
in Section X-A. Against this generic backdrop, here we provide 
a few design guidelines for the first stage of the Qinternet’s 
roadmap seen in Fig. 32, namely for the family of QKD 
networks without quantum repeaters by considering the cost, 
distance, key rate, channel type and quality, system complexity 
and the number of users, for example. It is plausible that the 
designer has to strike a trade-off among these typically 
conflicting metrics, as portrayed at a glance in Fig. 37. 

The designer has to start from collecting as many of the basic 
metrics and constraints listed in the central core of Fig. 37 as 
possible and then follow an iterative design procedure 
reminiscent of the following steps. 

1) Using the costing guidelines of QKD networks, narrow 
down the design options of Fig. 37. 

2) The evolution of optical OFDM systems was documented 
in [604] and these guidelines may be used for designing 
the optical quantum links.  

3) The broad design guidelines of the associated forward 
error correction (FEC) schemes may be inferred from 
[605].  

4) It is vitally important to harmonize the bit error rate (BER) 
of the quantum link and of the classical link to avoid that 
the high BER of one of them results in an outage of the 
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entire system.  
5) Given the key rate vs. distance trade-off, it is plausible that 

this directly affects the cost and the number of relays. To 
elaborate a little further, given a certain source-destination 
distance, we can harness more relays for reducing the 
propagation distance and hence increase the key rate, but 
only at an increased cost and relaying delay. Indeed, a 
whole host of similarly intricate trade-offs may be inferred 
by carefully scrutinizing Fig. 37, which are left for you to 
explore valued colleague. 

C. Summary 

The QKD networks are capable of providing long-term data 
protection and future-proof security for numerous applications, 
but they have numerous open problems as well. This survey 
provides a comprehensive overview of the past achievements 
complemented by a broad research outlook on QKD networks. 
We commenced by a rudimentary introduction of the QKD 
mechanism, its implementation options, and protocols. Then, 
we categorized the QKD network implementation options and 
reviewed the development of QKD network implementations, 
covering short-range, metropolitan, and long-haul QKD 
networks. Subsequently, we described the general QKD 
network architecture, its elements, as well as its interfaces and 
protocols. Furthermore, we conducted an in-depth survey of the 
diverse enabling techniques both in the physical and network 
layers. Moreover, we outlined the associated standardization 
efforts as well as the application scenarios. Finally, we rounded 
off the paper by discussing a suite of promising future research 
directions on QKD networks, which constitute the initial stage 
of developing the Qinternet of the future. We believe that QKD 
networks will attract more and more attention from both 
academia and industry. A number of academic and engineering 
efforts across the fields of physics, computer science, security, 
and communications will be required to progress the all-round 
development of QKD networks. Our hope is that both 
researchers and practitioners might find intellectual stimulation 
in consulting this treatise – please join this multi-disciplinary 
research effort valued colleague.  

REFERENCES 
[1] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. 

O’Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp. 45–53, 
Mar. 2010. 

[2] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and C. 
Monroe, “Demonstration of a small programmable quantum computer 
with atomic qubits,” Nature, vol. 536, no. 7614, pp. 63–66, Aug. 2016. 

[3] B. Lekitsch, S. Weidt, A. G. Fowler, K. Mølmer, S. J. Devitt, C. 
Wunderlich, and W. K. Hensinger, “Blueprint for a microwave trapped 
ion quantum computer,” Sci. Adv., vol. 3, no. 2, Feb. 2017, Art. no. 
e1601540. 

[4] L. R. Schreiber and H. Bluhm, “Toward a silicon-based quantum 
computer,” Science, vol. 359, no. 6374, pp. 393–394, Jan. 2018. 

[5] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. 
Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. 
Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. 
Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. 
Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. 
Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. 
Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. 

Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J. R. McClean, 
M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. 
Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. 
Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. 
Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, 
B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. 
M. Martinis, “Quantum supremacy using a programmable 
superconducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, Oct. 
2019.  

[6] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. 
Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, 
X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, 
and J.-W. Pan, “Quantum computational advantage using photons,” 
Science, vol. 370, no. 6523, pp. 1460–1463, Dec. 2020. 

[7] M. Gong, S. Wang, C. Zha, M.-C. Chen, H.-L. Huang, Y. Wu, Q. Zhu, Y. 
Zhao, S. Li, S. Guo, H. Qian, Y. Ye, F. Chen, C. Ying, J. Yu, D. Fan, D. 
Wu, H. Su, H. Deng, H. Rong, K. Zhang, S. Cao, J. Lin, Y. Xu, L. Sun, C. 
Guo, N. Li, F. Liang, V. M. Bastidas, K. Nemoto, W. J. Munro, Y.-H. Huo, 
C.-Y. Lu, C.-Z. Peng, X. Zhu, and J.-W. Pan, “Quantum walks on a 
programmable two-dimensional 62-qubit superconducting processor,” 
Science, vol. 372, no. 6545, pp. 948–952, May 2021. 

[8] “Quantum Safe Cryptography and Security,” ETSI White Paper No. 8, 
June 2015 [Online]. Available: https://www.etsi.org/images/files/ETSIW 
hitePapers/QuantumSafeWhitepaper.pdf. 

[9] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital 
signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, 
pp. 120–126, Feb. 1978. 

[10] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE 

Trans. Inf. Theory, vol. 22, no. 6, pp. 644–654, Nov. 1976. 
[11] V. S. Miller, “Use of elliptic curves in cryptography,” in Proc. Conf. 

Theory Appl. Crypt. Tech., Santa Barbara, CA, USA, Aug. 1985, pp. 
417–426. 

[12] N. Koblitz, “Elliptic curve cryptosystems,” Math. Comput., vol. 48, no. 
177, pp. 203–209, Jan. 1987. 

[13] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms 
and factoring,” in Proc. 35th Annu. Symp. Found. Comput. Sci., Santa Fe, 
NM, USA, Nov. 1994, pp. 124–134. 

[14] D. J. Bernstein, J. Buchmann, and E. Dahmen, Post-Quantum 

Cryptography, Berlin, Heidelberg: Springer, 2009. 
[15] D. J. Bernstein and T. Lange, “Post-quantum cryptography,” Nature, vol. 

549, no. 7671, pp. 188–194, Sept. 2017. 
[16] “The State of Post-Quantum Cryptography,” CSA Quantum-Safe 

Security Working Group, May 2018 [Online]. Available: https://cloudsec 
urityalliance.org/artifacts/the-state-of-post-quantum-cryptography/. 

[17] N. Sendrier, “Code-based cryptography: State of the art and 
perspectives,” IEEE Secur. Priv., vol. 15, no. 4, pp. 44–50, Aug. 2017. 

[18] D. Butin, “Hash-based signatures: State of play,” IEEE Secur. Priv., vol. 
15, no. 4, pp. 37–43, Aug. 2017. 

[19] H. Nejatollahi, N. Dutt, S. Ray, F. Regazzoni, I. Banerjee, and R. 
Cammarota, “Post-quantum lattice-based cryptography implementations: 
A survey,” ACM Comput. Surv., vol. 51, no. 6, Feb. 2019, Art. no. 129. 

[20] J. Ding and A. Petzoldt, “Current state of multivariate cryptography,” 
IEEE Secur. Priv., vol. 15, no. 4, pp. 28–36, Aug. 2017. 

[21] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key 
distribution and coin tossing,” in Proc. IEEE Int. Conf. Comput. Syst. 

Signal Process., Bangalore, India, Jan. 1984, pp. 175–179. 
[22] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum 

cryptography,” Rev. Mod. Phys., vol. 74, no. 1, pp. 145–195, Mar. 2002. 
[23] J. Buchmann, J. Braun, D. Demirel, and M. Geihs, “Quantum 

cryptography: A view from classical cryptography,” Quantum Sci. 

Technol., vol. 2, no. 2, May 2017, Art. no. 020502. 
[24] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. 

Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira, M. 
Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. 
Villoresi, and P. Wallden, “Advances in quantum cryptography,” Adv. 

Opt. Photonics, vol. 12, no. 4, pp. 1012–1236, Dec. 2020. 
[25] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” 

Nature, vol. 299, no. 5886, pp. 802–803, Oct. 1982. 
[26] M. J. W. Hall, “Information exclusion principle for complementary 

observables,” Phys. Rev. Lett., vol. 74, no. 17, pp. 3307–3311, Apr. 1995. 
[27] L.-J. Wang, K.-Y. Zhang, J.-Y. Wang, J. Cheng, Y.-H. Yang, S.-B. Tang, 

D. Yan, Y.-L. Tang, Z. Liu, Y. Yu, Q. Zhang, and J.-W. Pan, 
“Experimental authentication of quantum key distribution with 



 
 

45 

post-quantum cryptography,” npj Quantum Inf., vol. 7, May 2021, Art. no. 
67. 

[28] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. 
Lütkenhaus, and M. Peev, “The security of practical quantum key 
distribution,” Rev. Mod. Phys., vol. 81, no. 3, pp. 1301–1350, Sept. 2009. 

[29] E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, “Practical challenges in 
quantum key distribution,” npj Quantum Inf., vol. 2, Nov. 2016, Art. no. 
16025. 

[30] Q. Zhang, F. Xu, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Large scale 
quantum key distribution: Challenges and solutions [Invited],” Opt. 

Express, vol. 26, no. 18, pp. 24260–24273, Sept. 2018. 
[31] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, “Secure quantum key 

distribution with realistic devices,” Rev. Mod. Phys., vol. 92, no. 2, May 
2020, Art. no. 025002. 

[32] H.-K. Lo and H. F. Chau, “Unconditional security of quantum key 
distribution over arbitrarily long distances,” Science, vol. 283, no. 5410, 
pp. 2050–2056, Mar. 1999. 

[33] H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” 
Nature Photon., vol. 8, no. 8, pp. 595–604, Aug. 2014. 

[34] G. S. Vernam, “Cipher printing telegraph systems for secret wire and 
radio telegraphic communications,” Trans. Am. Inst. Electr. Eng., vol. 
XLV, pp. 295–301, Jan. 1926. 

[35] C. E. Shannon, “Communication theory of secrecy systems,” The Bell 

Syst. Tech. J., vol. 28, no. 4, pp. 656–715, Oct. 1949. 
[36] “Advanced Encryption Standard (AES),” FIPS PUB 197, Nov. 2001. 
[37] N. Gisin and R. Thew, “Quantum communication,” Nature Photon., vol. 1, 

no. 3, pp. 165–171, Mar. 2007. 
[38] ID Quantique [Online]. Available: https://www.idquantique.com. 
[39] QuantumCTek [Online]. Available: http://www.quantum-info.com/Engli 

sh/. 
[40] Toshiba QKD System [Online]. Available: https://www.toshiba.eu/pages/ 

eu/Cambridge-Research-Laboratory/toshiba-qkd-system. 
[41] J. Qiu, “Quantum communications leap out of the lab,” Nature, vol. 508, 

no. 7497, pp. 441–442, Apr. 2014. 
[42] C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, 

“Current status of the DARPA quantum network,” Proc. SPIE, Quantum 

Inf. Comput. III, vol. 5815, pp. 138–149, May 2005. 
[43] M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. 

Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. 
Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, 
M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. 
Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. 
Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. 
Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. 
Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. 
Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. 
Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The 
SECOQC quantum key distribution network in Vienna,” New J. Phys., 
vol. 11, no. 7, July 2009, Art. no. 075001. 

[44] M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. 
Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. 
Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. 
Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. 
Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. 
Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. 
Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. 
Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum 
key distribution in the Tokyo QKD network,” Opt. Express, vol. 19, no. 
11, pp. 10387–10409, May 2011. 

[45] D. Stucki, M. Legré, F. Buntschu, B. Clausen, N. Felber, N. Gisin, L. 
Henzen, P. Junod, G. Litzistorf, P. Monbaron, L. Monat, J.-B. Page, D. 
Perroud, G. Ribordy, A. Rochas, S. Robyr, J. Tavares, R. Thew, P. 
Trinkler, S. Ventura, R. Voirol, N. Walenta, and H. Zbinden, “Long-term 
performance of the SwissQuantum quantum key distribution network in a 
field environment,” New J. Phys., vol. 13, no. 12, Dec. 2011, Art. no. 
123001. 

[46] Y.-A. Chen, “Large-scale quantum network: From intra-city to inter-city 
to global,” in Proc. 8th Int. Conf. Quantum Crypt., Shanghai, China, Aug. 
2018. 

[47] J. F. Dynes, A. Wonfor, W. W.-S. Tam, A. W. Sharpe, R. Takahashi, M. 
Lucamarini, A. Plews, Z. L. Yuan, A. R. Dixon, J. Cho, Y. Tanizawa, J.-P. 
Elbers, H. Greißer, I. H. White, R. V. Penty, and A. J. Shields, 
“Cambridge quantum network,” npj Quantum Inf., vol. 5, Nov. 2019, Art. 

no. 101. 
[48] S.-K. Liao, W.-Q. Cai, J. Handsteiner, B. Liu, J. Yin, L. Zhang, D. Rauch, 

M. Fink, J.-G. Ren, W.-Y. Liu, Y. Li, Q. Shen, Y. Cao, F.-Z. Li, J.-F. 
Wang, Y.-M. Huang, L. Deng, T. Xi, L. Ma, T. Hu, L. Li, N.-L. Liu, F. 
Koidl, P. Wang, Y.-A. Chen, X.-B. Wang, M. Steindorfer, G. Kirchner, 
C.-Y. Lu, R. Shu, R. Ursin, T. Scheidl, C.-Z. Peng, J.-Y. Wang, A. 
Zeilinger, and J.-W. Pan, “Satellite-relayed intercontinental quantum 
network,” Phys. Rev. Lett., vol. 120, no. 3, Jan. 2018, Art. no. 030501. 

[49] Y.-A. Chen, Q. Zhang, T.-Y. Chen, W.-Q. Cai, S.-K. Liao, J. Zhang, K. 
Chen, J. Yin, J.-G. Ren, Z. Chen, S.-L. Han, Q. Yu, K. Liang, F. Zhou, X. 
Yuan, M.-S. Zhao, T.-Y. Wang, X. Jiang, L. Zhang, W.-Y. Liu, Y. Li, Q. 
Shen, Y. Cao, C.-Y. Lu, R. Shu, J.-Y. Wang, L. Li, N.-L. Liu, F. Xu, X.-B. 
Wang, C.-Z. Peng, and J.-W. Pan, “An integrated space-to-ground 
quantum communication network over 4,600 kilometres,” Nature, vol. 
589, no. 7841, pp. 214–219, Jan. 2021. 

[50] S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for 
the road ahead,” Science, vol. 362, no. 6412, Oct. 2018, Art. no. 
eaam9288. 

[51] H. J. Kimble, “The quantum internet,” Nature, vol. 453, no. 7198, pp. 
1023–1030, June 2008.  

[52] R. Alléaume, C. Branciard, J. Bouda, T. Debuisschert, M. Dianati, N. 
Gisin, M. Godfrey, P. Grangier, T. Länger, N. Lütkenhaus, C. Monyk, P. 
Painchault, M. Peev, A. Poppe, T. Pornin, J. Rarity, R. Renner, G. 
Ribordy, M. Riguidel, L. Salvail, A. Shields, H. Weinfurter, and A. 
Zeilinger, “Using quantum key distribution for cryptographic purposes: A 
survey,” Theor. Comput. Sci., vol. 560, pp. 62–81, Dec. 2014. 

[53] E. Diamanti and A. Leverrier, “Distributing secret keys with quantum 
continuous variables: Principle, security and implementations,” Entropy, 
vol. 17, no. 9, pp. 6072–6092, Aug. 2015. 

[54] M. Sasaki, “Quantum networks: Where should we be heading?,” 
Quantum Sci. Technol., vol. 2, no. 2, Apr. 2017, Art. no. 020501. 

[55] W. Dür, R. Lamprecht, and S. Heusler, “Towards a quantum internet,” 
Eur. J. Phys., vol. 38, no. 4, May 2017, Art. no. 043001. 

[56] A. Shenoy-Hejamadi, A. Pathak, and S. Radhakrishna, “Quantum 
cryptography: Key distribution and beyond,” Quanta, vol. 6, no. 1, pp. 
1–47, June 2017. 

[57] F. Laudenbach, C. Pacher, C.-H. F. Fung, A. Poppe, M. Peev, B. Schrenk, 
M. Hentschel, P. Walther, and H. Hübel, “Continuous-variable quantum 
key distribution with Gaussian modulation–The theory of practical 
implementations,” Adv. Quantum Technol., vol. 1, no. 1, June 2018, Art. 
no. 1800011. 

[58] L. Gyongyosi, L. Bacsardi, and S. Imre, “A survey on quantum key 
distribution,” Infocommun. J., vol. XI, no. 2, pp. 14–21, June 2019. 

[59] W. Kozlowski and S. Wehner, “Towards large-scale quantum networks,” 
in Proc. 6th Annu. ACM Int. Conf. Nanoscale Comput. Commun., Dublin, 
Ireland, Sept. 2019, Art. no. 3. 

[60] N. Hosseinidehaj, Z. Babar, R. Malaney, S. X. Ng, and L. Hanzo, 
“Satellite-based continuous-variable quantum communications: 
State-of-the-art and a predictive outlook,” IEEE Commun. Surveys Tuts., 
vol. 21, no. 1, pp. 881–919, 1st Quart., 2019. 

[61] F. Cavaliere, E. Prati, L. Poti, I. Muhammad, and T. Catuogno, “Secure 
quantum communication technologies and systems: From labs to 
markets,” Quantum Rep., vol. 2, no. 1, pp. 80–106, Jan. 2020. 

[62] M. Mehic, M. Niemiec, S. Rass, J. Ma, M. Peev, A. Aguado, V. Martin, S. 
Schauer, A. Poppe, C. Pacher, and M. Voznak, “Quantum key distribution: 
A networking perspective,” ACM Comput. Surv., vol. 53, no. 5, Sept. 
2020, Art. no. 96. 

[63] J. Zhang, T. Q. Duong, A. Marshall, and R. Woods, “Key generation from 
wireless channels: A review,” IEEE Access, vol. 4, pp. 614–626, Mar. 
2016. 

[64] J. Zhang, S. Rajendran, Z. Sun, R. Woods, and L. Hanzo, “Physical layer 
security for the Internet of Things: Authentication and key generation,” 
IEEE Wireless Commun., vol. 26, no. 5, pp. 92–98, Oct. 2019. 

[65] “Overview on networks supporting quantum key distribution,” 
Recommendation ITU-T Y.3800, Oct. 2019. 

[66] “Quantum key distribution (QKD); Device and communication channel 
parameters for QKD deployment,” ETSI GS QKD 012 V1.1.1, Feb. 2019. 

[67] L. Gyongyosi, S. Imre, and H. V. Nguyen, “A survey on quantum channel 
capacities,” IEEE Commun. Surveys Tuts., vol. 20, no. 2, pp. 1149–1205, 
2nd Quart., 2018. 

[68] A. S. Cacciapuoti, M. Caleffi, R. V. Meter, and L. Hanzo, “When 
entanglement meets classical communications: Quantum teleportation for 
the quantum internet,” IEEE Trans. Commun., vol. 68, no. 6, pp. 



 
 

46 

3808–3833, June 2020. 
[69] J. F. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. 

Lucamarini, Z. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, 
“Ultra-high bandwidth quantum secured data transmission,” Sci. Rep., vol. 
6, Oct. 2016, Art. no. 35149. 

[70] A. Boaron, G. Boso, D. Rusca, C. Vulliez, C. Autebert, M. Caloz, M. 
Perrenoud, G. Gras, F. Bussières, M.-J. Li, D. Nolan, A. Martin, and H. 
Zbinden, “Secure quantum key distribution over 421 km of optical fiber,” 
Phys. Rev. Lett., vol. 121, no. 19, Nov. 2018, Art. no. 190502. 

[71] X.-T. Fang, P. Zeng, H. Liu, M. Zou, W. Wu, Y.-L. Tang, Y.-J. Sheng, Y. 
Xiang, W. Zhang, H. Li, Z. Wang, L. You, M.-J. Li, H. Chen, Y.-A. Chen, 
Q. Zhang, C.-Z. Peng, X. Ma, T.-Y. Chen, and J.-W. Pan, 
“Implementation of quantum key distribution surpassing the linear 
rate-transmittance bound,” Nature Photon., vol. 14, no. 7, pp. 422–425, 
July 2020. 

[72] J.-P. Chen, C. Zhang, Y. Liu, C. Jiang, W. Zhang, X.-L. Hu, J.-Y. Guan, 
Z.-W. Yu, H. Xu, J. Lin, M.-J. Li, H. Chen, H. Li, L. You, Z. Wang, X.-B. 
Wang, Q. Zhang, and J.-W. Pan, “Sending-or-not-sending with 
independent lasers: Secure twin-field quantum key distribution over 509 
km,” Phys. Rev. Lett., vol. 124, no. 7, Feb. 2020, Art. no. 070501. 

[73] M. Pittaluga, M. Minder, M. Lucamarini, M. Sanzaro, R. I. Woodward, 
M.-J. Li, Z. Yuan, and A. J. Shields, “600-km repeater-like quantum 
communications with dual-band stabilization,” Nature Photon., vol. 15, 
no. 7, pp. 530–535, July 2021. 

[74] S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, and H. 
Weinfurter, “Air -to-ground quantum communication,” Nature Photon., 
vol. 7, no. 5, pp. 382–386, May 2013. 

[75] S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren, J. Yin, Q. 
Shen, Y. Cao, Z.-P. Li, F.-Z. Li, X.-W. Chen, L.-H. Sun, J.-J. Jia, J.-C. Wu, 
X.-J. Jiang, J.-F. Wang, Y.-M. Huang, Q. Wang, Y.-L. Zhou, L. Deng, T. 
Xi, L. Ma, T. Hu, Q. Zhang, Y.-A. Chen, N.-L. Liu, X.-B. Wang, Z.-C. 
Zhu, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, 
“Satellite-to-ground quantum key distribution,” Nature, vol. 549, no. 
7670, pp. 43–47, Sept. 2017. 

[76] S.-K. Liao, H.-L. Yong, C. Liu, G.-L. Shentu, D.-D. Li, J. Lin, H. Dai, 
S.-Q. Zhao, B. Li, J.-Y. Guan, W. Chen, Y.-H. Gong, Y. Li, Z.-H. Lin, 
G.-S. Pan, J. S. Pelc, M. M. Fejer, W.-Z. Zhang, W.-Y. Liu, J. Yin, J.-G. 
Ren, X.-B. Wang, Q. Zhang, C.-Z. Peng, and J.-W. Pan, “Long-distance 
free-space quantum key distribution in daylight towards inter-satellite 
communication,” Nature Photon., vol. 11, no. 8, pp. 509–513, Aug. 2017. 

[77] L. Ji, J. Gao, A.-L. Yang, Z. Feng, X.-F. Lin, Z.-G. Li, and X.-M. Jin, 
“Towards quantum communications in free-space seawater,” Opt. 

Express, vol. 25, no. 17, pp. 19795–19806, Aug. 2017. 
[78] F. Bouchard, A. Sit, F. Hufnagel, A. Abbas, Y. Zhang, K. Heshami, R. 

Fickler, C. Marquardt, G. Leuchs, R. W. Boyd, and E. Karimi, “Quantum 
cryptography with twisted photons through an outdoor underwater 
channel,” Opt. Express, vol. 26, no. 17, pp. 22563–22573, Aug. 2018. 

[79] S. Zhao, W. Li, Y. Shen, Y. Yu, X. Han, H. Zeng, M. Cai, T. Qian, S. 
Wang, Z. Wang, Y. Xiao, and Y. Gu, “Experimental investigation of 
quantum key distribution over a water channel,” Appl. Opt., vol. 58, no. 
14, pp. 3902–3907, May 2019. 

[80] M. Lanzagorta and J. Uhlmann, “Assessing feasibility of secure quantum 
communications involving underwater assets,” IEEE J. Ocean. Eng., vol. 
45, no. 3, pp. 1138–1147, July 2020. 

[81] Y. Cao, Y.-H. Li, K.-X. Yang, Y.-F. Jiang, S.-L. Li, X.-L. Hu, M. Abulizi, 
C.-L. Li, W. Zhang, Q.-C. Sun, W.-Y. Liu, X. Jiang, S.-K. Liao, J.-G. Ren, 
H. Li, L. You, Z. Wang, J. Yin, C.-Y. Lu, X.-B. Wang, Q. Zhang, C.-Z. 
Peng, and J.-W. Pan, “Long-distance free-space 
measurement-device-independent quantum key distribution,” Phys. Rev. 

Lett., vol. 125, no. 26, Dec. 2020, Art. no. 260503. 
[82] C.-Q. Hu, Z.-Q. Yan, J. Gao, Z.-M. Li, H. Zhou, J.-P. Dou, and X.-M. Jin, 

“Decoy-state quantum key distribution over a long-distance high-loss 
air-water channel,” Phys. Rev. Applied, vol. 15, no. 2, Feb. 2021, Art. no. 
024060. 

[83] I. Khan, B. Heim, A. Neuzner, and C. Marquardt, “Satellite-based QKD,” 
Opt. Photon. News, vol. 29, no. 2, pp. 26–33, Feb. 2018. 

[84] Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Experimental quantum 
key distribution with decoy states,” Phys. Rev. Lett., vol. 96, no. 7, Feb. 
2006, Art. no. 070502. 

[85] B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. 
Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical 
quantum key distribution over 307 km of optical fibre,” Nature Photon., 
vol. 9, no. 3, pp. 163–168, Mar. 2015. 

[86] H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. 
Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. 
Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, 
“Measurement-device-independent quantum key distribution over a 404 
km optical fiber,” Phys. Rev. Lett., vol. 117, no. 19, Nov. 2016, Art. no. 
190501. 

[87] B. Fröhlich, M. Lucamarini, J. F. Dynes, L. C. Comandar, W. W.-S. Tam, 
A. Plews, A. W. Sharpe, Z. Yuan, and A. J. Shields, “Long-distance 
quantum key distribution secure against coherent attacks,” Optica, vol. 4, 
no. 1, pp. 163–167, Jan. 2017. 

[88] B. Qi, L.-L. Huang, L. Qian, and H.-K. Lo, “Experimental study on the 
Gaussian-modulated coherent-state quantum key distribution over 
standard telecommunication fibers,” Phys. Rev. A, vol. 76, no. 5, Nov. 
2007, Art. no. 052323. 

[89] P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, 
“Experimental demonstration of long-distance continuous-variable 
quantum key distribution,” Nature Photon., vol. 7, no. 5, pp. 378–381, 
May 2013. 

[90] D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance 
continuous-variable quantum key distribution by controlling excess 
noise,” Sci. Rep., vol. 6, Jan. 2016, Art. no. 19201. 

[91] Y. Zhang, Z. Li, Z. Chen, C. Weedbrook, Y. Zhao, X. Wang, Y. Huang, C. 
Xu, X. Zhang, Z. Wang, M. Li, X. Zhang, Z. Zheng, B. Chu, X. Gao, N. 
Meng, W. Cai, Z. Wang, G. Wang, S. Yu, and H. Guo, 
“Continuous-variable QKD over 50 km commercial fiber,” Quantum Sci. 

Technol., vol. 4, no. 3, May 2019, Art. no. 035006. 
[92] F. Grosshans and P. Grangier, “Continuous variable quantum 

cryptography using coherent states,” Phys. Rev. Lett., vol. 88, no. 5, Jan. 
2002, Art. no. 057902.  

[93] K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum 
key distribution,” Phys. Rev. Lett., vol. 89, no. 3, June 2002, Art. no. 
037902. 

[94] W.-Y. Hwang, “Quantum key distribution with high loss: Toward global 
secure communication,” Phys. Rev. Lett., vol. 91, no. 5, Aug. 2003, Art. 
no. 057901. 

[95] X.-B. Wang, “Beating the photon-number-splitting attack in practical 
quantum cryptography,” Phys. Rev. Lett., vol. 94, no. 23, June 2005, Art. 
no. 230503. 

[96] H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” 
Phys. Rev. Lett., vol. 94, no. 23, June 2005, Art. no. 230504. 

[97] V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum cryptography 
protocols robust against photon number splitting attacks for weak laser 
pulse implementations,” Phys. Rev. Lett., vol. 92, no. 5, Feb. 2004, Art. no. 
057901. 

[98] D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and 
simple one-way quantum key distribution,” Appl. Phys. Lett., vol. 87, no. 
19, Nov. 2005, Art. no. 194108.  

[99] A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. 

Lett., vol. 67, no. 6, pp. 661–663, Aug. 1991. 
[100] C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography 

without Bell’s theorem,” Phys. Rev. Lett., vol. 68, no. 5, pp. 557–559, Feb. 
1992. 

[101] J. Zhang, M. A. Itzler, H. Zbinden, and J.-W. Pan, “Advances in 
InGaAs/InP single-photon detector systems for quantum 
communication,” Light Sci. Appl., vol. 4, no. 5, May 2015, Art. no. e286. 

[102] Y. Zhang, Z. Chen, S. Pirandola, X. Wang, C. Zhou, B. Chu, Y. Zhao, B. 
Xu, S. Yu, and H. Guo, “Long-distance continuous-variable quantum key 
distribution over 202.81 km of fiber,” Phys. Rev. Lett., vol. 125, no. 1, 
July 2020, Art. no. 010502. 

[103] R. Valivarthi, S. Etcheverry, J. Aldama, F. Zwiehoff, and V. Pruneri, 
“Plug-and-play continuous-variable quantum key distribution for 
metropolitan networks,” Opt. Express, vol. 28, no. 10, pp. 14547–14559, 
May 2020. 

[104] U. L. Andersen, J. S. Neergaard-Nielsen, P. van Loock, and A. Furusawa, 
“Hybrid discrete- and continuous-variable quantum information,” Nature 

Phys., vol. 11, no. 9, pp. 713–719, Sept. 2015. 
[105] I. B. Djordjevic, “Hybrid DV-CV QKD outperforming existing QKD 

protocols in terms of secret-key rate and achievable distance,” in Proc. 

21st Int. Conf. Transparent Optical Networks, Angers, France, July 2019, 
Art. no. We.C5.5. 

[106] H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent 
quantum key distribution,” Phys. Rev. Lett., vol. 108, no. 13, Mar. 2012, 
Art. no. 130503. 



 
 

47 

[107] M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Overcoming 
the rate-distance limit of quantum key distribution without quantum 
repeaters,” Nature, vol. 557, no. 7705, pp. 400–403, May 2018. 

[108] X. Ma, P. Zeng, and H. Zhou, “Phase-matching quantum key 
distribution,” Phys. Rev. X, vol. 8, no. 3, Aug. 2018, Art. no. 031043. 

[109] C. Pacher, A. Abidin, T. Lorünser, M. Peev, R. Ursin, A. Zeilinger, and 
J.-Å. Larsson, “Attacks on quantum key distribution protocols that 
employ non-ITS authentication,” Quantum Inf. Process., vol. 15, no. 1, pp. 
327–362, Jan. 2016. 

[110] G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on 
practical quantum cryptography,” Phys. Rev. Lett., vol. 85, no. 6, pp. 
1330–1333, Aug. 2000. 

[111] N. Lütkenhaus, “Security against individual attacks for realistic quantum 
key distribution,” Phys. Rev. A, vol. 61, no. 5, May 2000, Art. no. 052304. 

[112] XT Quantech [Online]. Available: http://www.xtquantech.com/en/. 
[113] K. Tamaki, H.-K. Lo, C.-H. F. Fung, and B. Qi, “Phase encoding schemes 

for measurement-device-independent quantum key distribution with 
basis-dependent flaw,” Phys. Rev. A, vol. 85, no. 4, Apr. 2012, Art. no. 
042307. 

[114] X. Ma and M. Razavi, “Alternative schemes for 
measurement-device-independent quantum key distribution,” Phys. Rev. 

A, vol. 86, no. 6, Dec. 2012, Art. no. 062319. 
[115] F. Xu, M. Curty, B. Qi, and H.-K. Lo, “Measurement-device-independent 

quantum cryptography,” IEEE J. Sel. Top. Quantum Electron., vol. 21, no. 
3, May/June 2015, Art no. 6601111. 

[116] S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, 
S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate 
measurement-device-independent quantum cryptography,” Nature 

Photon., vol. 9, no. 6, pp. 397–402, June 2015. 
[117] H.-X. Ma, P. Huang, D.-Y. Bai, T. Wang, S.-Y. Wang, W.-S. Bao, and 

G.-H. Zeng, “Long-distance continuous-variable 
measurement-device-independent quantum key distribution with discrete 
modulation,” Phys. Rev. A, vol. 99, no. 2, Feb. 2019, Art. no. 022322. 

[118] D. Pan, S. X. Ng, D. Ruan, L. Yin, G. Long, and L. Hanzo, “Simultaneous 
two-way classical communication and measurement-device-independent 
quantum key distribution with coherent states,” Phys. Rev. A, vol. 101, no. 
1, Jan. 2020, Art. no. 012343. 

[119] W. Wang, F. Xu, and H.-K. Lo, “Asymmetric protocols for scalable 
high-rate measurement-device-independent quantum key distribution 
networks,” Phys. Rev. X, vol. 9, no. 4, Oct. 2019, Art. no. 041012. 

[120] H. Liu, W. Wang, K. Wei, X.-T. Fang, L. Li, N.-L. Liu, H. Liang, S.-J. 
Zhang, W. Zhang, H. Li, L. You, Z. Wang, H.-K. Lo, T.-Y. Chen, F. Xu, 
and J.-W. Pan, “Experimental demonstration of high-rate 
measurement-device-independent quantum key distribution over 
asymmetric channels,” Phys. Rev. Lett., vol. 122, no. 16, Apr. 2019, Art. 
no. 160501. 

[121] S. Pironio, A. Acín, N. Brunner, N. Gisin, S. Massar, and V. Scarani, 
“Device-independent quantum key distribution secure against collective 
attacks,” New. J. Phys., vol. 11, no. 4, Apr. 2009, Art. no. 045021. 

[122] K. Marshall and C. Weedbrook, “Device-independent quantum 
cryptography for continuous variables,” Phys. Rev. A, vol. 90, no. 4, Oct. 
2014, Art. no. 042311. 

[123] J. Xin, X.-M. Lu, X. Li, and G. Li, “One-sided device-independent 
quantum key distribution for two independent parties,” Opt. Express, vol. 
28, no. 8, pp. 11439–11450, Apr. 2020. 

[124] G. Murta, S. B. van Dam, J. Ribeiro, R. Hanson, and S. Wehner, “Towards 
a realization of device-independent quantum key distribution,” Quantum 

Sci. Technol., vol. 4, no. 3, July 2019, Art. no. 035011. 
[125] M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. 

Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state 
quantum key distribution with quantified security,” Opt. Express, vol. 21, 
no. 21, pp. 24550–24565, Oct. 2013. 

[126] V. Martin, A. Aguado, D. Lopez, M. Peev, V. Lopez, A. Pastor, A. Poppe, 
H. Brunner, S. Bettelli, F. Fung, D. Hillerkuss, L. Comandar, and D. 
Wang, “The Madrid SDN-QKD network,” in Proc. 8th Int. Conf. 

Quantum Crypt., Shanghai, China, Aug. 2018. 
[127] R. S. Tessinari, A. Bravalheri, E. Hugues-Salas, R. Collins, D. Aktas, R. S. 

Guimaraes, O. Alia, J. Rarity, G. T. Kanellos, R. Nejabati, and D. 
Simeonidou, “Field trial of dynamic DV-QKD networking in the 
SDN-controlled fully-meshed optical metro network of the Bristol city 
5GUK test network,” in Proc. Eur. Conf. Opt. Commun., Dublin, Ireland, 
Sept. 2019. 

[128] A. Wonfor, C. White, A. Bahrami, J. Pearse, G. Duan, A. Straw, T. 

Edwards, T. Spiller, R. Penty, and A. Lord, “Field trial of multi-node, 
coherent-one-way quantum key distribution with encrypted 5x100G 
DWDM transmission system,” in Proc. Eur. Conf. Opt. Commun., Dublin, 
Ireland, Sept. 2019. 

[129] T.-Y. Chen, X. Jiang, S.-B. Tang, L. Zhou, X. Yuan, H. Zhou, J. Wang, Y. 
Liu, L.-K. Chen, W.-Y. Liu, H.-F. Zhang, K. Cui, H. Liang, X.-G. Li, Y. 
Mao, L.-J. Wang, S.-B. Feng, Q. Chen, Q. Zhang, L. Li, N.-L. Liu, C.-Z. 
Peng, X. Ma, Y. Zhao, and J.-W. Pan, “Implementation of a 46-node 
quantum metropolitan area network,” npj Quantum Inf., vol. 7, Sept. 2021, 
Art. no. 134. 

[130] B. Fröhlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, Z. Yuan, and A. J. 
Shields, “A quantum access network,” Nature, vol. 501, no. 7465, pp. 
69–72, Sept. 2013. 

[131] X. Tang, A. Wonfor, R. Kumar, R. V. Penty, and I. H. White, 
“Quantum-safe metro network with low-latency reconfigurable quantum 
key distribution,” J. Lightwave Technol., vol. 36, no. 22, pp. 5230–5236, 
Nov. 2018. 

[132] Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. 
Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. 
Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, 
“Measurement-device-independent quantum key distribution over 
untrustful metropolitan network,” Phys. Rev. X, vol. 6, no. 1, Mar. 2016, 
Art. no. 011024. 

[133] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The 
role of imperfect local operations in quantum communication,” Phys. Rev. 

Lett., vol. 81, no. 26, pp. 5932–5935, Dec. 1998. 
[134] N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum 

repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys., 
vol. 83, no. 1, pp. 33–80, Mar. 2011. 

[135] R. V. Meter and J. Touch, “Designing quantum repeater networks,” IEEE 

Commun. Mag., vol. 51, no. 8, pp. 64–71, Aug. 2013. 
[136] P. D. Townsend, “Quantum cryptography on multiuser optical fibre 

networks,” Nature, vol. 385, no. 6611, pp. 47–49, Jan. 1997. 
[137] I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the 

home,” New J. Phys., vol. 13, no. 6, June 2011, Art. no. 063039. 
[138] T. R. Raddo, S. Rommel, V. Land, C. Okonkwo, and I. T. Monroy, 

“Quantum data encryption as a service on demand: Eindhoven QKD 
network testbed,” in Proc. 21st Int. Conf. Transparent Optical Networks, 
Angers, France, July 2019, Art. no. We.B5.2. 

[139] X. Tang, L. Ma, A. Mink, A. Nakassis, H. Xu, B. Hershman, J. Bienfang, 
D. Su, R. F. Boisvert, C. Clark, and C. Williams, “Demonstration of an 
active quantum key distribution network,” Proc. SPIE, Quantum 

Commun. Quantum Imag. IV, vol. 6305, Aug. 2006, Art. no. 630506. 
[140] L. Ma, A. Mink, H. Xu, O. Slattery, and X. Tang, “Experimental 

demonstration of an active quantum key distribution network with over 
gbps clock synchronization,” IEEE Commun. Lett., vol. 11, no. 12, pp. 
1019–1021, Dec. 2007. 

[141] L. Ma, X. Tang, O. Slattery, and A. Battou, “A testbed for quantum 
communication and quantum networks,” Proc. SPIE, Quantum Inf. Sci. 

Sens. Comput. XI, vol. 10984, May 2019, Art. no. 1098407. 
[142] C. Elliott, “Building the quantum network,” New J. Phys., vol. 4, no. 1, 

July 2002, Art. no. 46. 
[143] W. Chen, Z.-F. Han, T. Zhang, H. Wen, Z.-Q. Yin, F.-X. Xu, Q.-L. Wu, Y. 

Liu, Y. Zhang, X.-F. Mo, Y.-Z. Gui, G. Wei, and G.-C. Guo, “Field 
experiment on a “star type” metropolitan quantum key distribution 
network,” IEEE Photon. Technol. Lett., vol. 21, no. 9, pp. 575–577, May 
2009. 

[144] M. Dianati and R. Alléaume, “Architecture of the Secoqc quantum key 
distribution network,” in Proc. 1st Int. Conf. Quantum, Nano, and Micro 

Technol., Guadeloupe, Jan. 2007. 
[145] R. Alléaume, J. Bouda, C. Branciard, T. Debuisschert, M. Dianati, N. 

Gisin, M. Godfrey, P. Grangier, T. Länger, A. Leverrier, N. Lütkenhaus, P. 
Painchault, M. Peev, A. Poppe, T. Pornin, J. Rarity, R. Renner, G. 
Ribordy, M. Riguidel, L. Salvail, A. Shields, H. Weinfurter, and A. 
Zeilinger, “SECOQC white paper on quantum key distribution and 
cryptography,” arXiv: quant-ph/0701168, 2007.  

[146] A. Poppe, M. Peev, and O. Maurhart, “Outline of the SECOQC 
quantum-key-distribution network in Vienna,” Int. J. Quantum Inf., vol. 6, 
no. 2, pp. 209–218, Apr. 2008. 

[147] T.-Y. Chen, H. Liang, Y. Liu, W.-Q. Cai, L. Ju, W.-Y. Liu, J. Wang, H. 
Yin, K. Chen, Z.-B. Chen, C.-Z. Peng, and J.-W. Pan, “Field test of a 
practical secure communication network with decoy-state quantum 
cryptography,” Opt. Express, vol. 17, no. 8, pp. 6540–6549, Apr. 2009. 



 
 

48 

[148] A. Mirza and F. Petruccione, “Realizing long-term quantum 
cryptography,” J. Opt. Soc. Am. B, vol. 27, no. 6, pp. A185–A188, June 
2010.  

[149] F. Xu, W. Chen, S. Wang, Z. Yin, Y. Zhang, Y. Liu, Z. Zhou, Y. Zhao, H. 
Li, D. Liu, Z. Han, and G. Guo, “Field experiment on a robust hierarchical 
metropolitan quantum cryptography network,” Chin. Sci. Bull., vol. 54, no. 
17, pp. 2991–2997, Sept. 2009. 

[150] T.-Y. Chen, J. Wang, H. Liang, W.-Y. Liu, Y. Liu, X. Jiang, Y. Wang, X. 
Wan, W.-Q. Cai, L. Ju, L.-K. Chen, L.-J. Wang, Y. Gao, K. Chen, C.-Z. 
Peng, Z.-B. Chen, and J.-W. Pan, “Metropolitan all-pass and inter-city 
quantum communication network,” Opt. Express, vol. 18, no. 26, pp. 
27217–27225, Dec. 2010. 

[151] D. Lancho, J. Martinez, D. Elkouss, M. Soto, and V. Martin, “QKD in 
standard optical telecommunications networks,” in Proc. Int. Conf. 

Quantum Commun. Quantum Netw., Naples, Italy, Oct. 2009, pp. 
142–149. 

[152] S. Wang, W. Chen, Z.-Q. Yin, Y. Zhang, T. Zhang, H.-W. Li, F.-X. Xu, Z. 
Zhou, Y. Yang, D.-J. Huang, L.-J. Zhang, F.-Y. Li, D. Liu, Y.-G. Wang, 
G.-C. Guo, and Z.-F. Han, “Field test of wavelength-saving quantum key 
distribution network,” Opt. Lett., vol. 35, no. 14, pp. 2454–2456, July 
2010. 

[153] Q. Zhang, “Quantum network in China,” in Proc. Updating Quantum 

Crypt. Commun., Tokyo, Japan, Sept. 2015. 
[154] A. Morrow, D. Hayford, and M. Legré, “Battelle QKD test bed,” in Proc. 

IEEE Conf. Technol. Homeland Security, Waltham, MA, USA, Nov. 2012, 
pp. 162–166. 

[155] N. Walenta, D. Caselunghe, S. Chuard, M. Domergue, M. Hagerman, R. 
Hart, D. Hayford, R. Houlmann, M. Legré, T. McCandlish, L. Monat, A. 
Morrow, G. Ribordy, D. Stucki, M. Tourville, P. Trinkler, and R. 
Wolterman, “Towards a North American QKD backbone with certifiable 
security,” in Proc. 5th Int. Conf. Quantum Crypt., Tokyo, Japan, Sept. 
2015. 

[156] A. Ciurana, J. Martínez-Mateo, M. Peev, A. Poppe, N. Walenta, H. 
Zbinden, and V. Martín, “Quantum metropolitan optical network based on 
wavelength division multiplexing,” Opt. Express, vol. 22, no. 2, pp. 
1576–1593, Jan. 2014. 

[157] D. Huang, P. Huang, H. Li, T. Wang, Y. Zhou, and G. Zeng, “Field 
demonstration of a continuous-variable quantum key distribution 
network,” Opt. Lett., vol. 41, no. 15, pp. 3511–3514, Aug. 2016. 

[158] O. I. Bannik, V. V. Chistyakov, L. R. Gilyazov, K. S. Melnik, A. B. 
Vasiliev, N. M. Arslanov, A. A. Gaidash, A. V. Kozubov, V. I. Egorov, S. 
A. Kozlov, A. V. Gleim, and S. A. Moiseev, “Multinode subcarrier wave 
quantum communication network,” in Proc. 7th Int. Conf. Quantum 

Crypt., Cambridge, UK, Sept. 2017. 
[159] T. Kim and S. Kwak, “Development of quantum technologies at SK 

Telecom,” AAPPS Bull., vol. 26, no. 6, pp. 2–9, Dec. 2016. 
[160] T. Kim, “Status of QKD system deployment and Ion Trap development at 

SK Telecom,” in Proc. Relativistic Quantum Inf. North, Kyoto, Japan, 
July 2017. 

[161] E. O. Kiktenko, N. O. Pozhar, A. V. Duplinskiy, A. A. Kanapin, A. S. 
Sokolov, S. S. Vorobey, A. V. Miller, V. E. Ustimchik, M. N. Anufriev, A. 
T. Trushechkin, R. R. Yunusov, V. L. Kurochkin, Y. V. Kurochkin, and A. 
K. Fedorov, “Demonstration of a quantum key distribution network in 
urban fibre-optic communication lines,” Quantum Electron., vol. 47, no. 9, 
pp. 798–802, Sept. 2017. 

[162] Wuhan Launches World-Leading Quantum Network [Online]. Available: 
http://www.chinadaily.com.cn/china/2017-11/01/content_33968959.htm. 

[163] A. Aguado, V. López, D. López, M. Peev, A. Poppe, A. Pastor, J. 
Folgueira, and V. Martín, “The engineering of software-defined quantum 
key distribution networks,” IEEE Commun. Mag., vol. 57, no. 7, pp. 
20–26, July 2019.  

[164] A. Aguado, V. López, J. P. Brito, A. Pastor, D. R. López, and V. Martin, 
“Enabling quantum key distribution networks via software-defined 
networking,” in Proc. Int. Conf. Optical Network Design and Modelling, 
Castelldefels, Barcelona, Spain, May 2020. 

[165] S. K. Joshi, D. Aktas, S. Wengerowsky, M. Lončarić, S. P. Neumann, B. 
Liu, T. Scheidl, G. C. Lorenzo, Ž. Samec, L. Kling, A. Qiu, M. Razavi, M. 
Stipčević, J. G. Rarity, and R. Ursin, “A trusted node-free eight-user 
metropolitan quantum communication network,” Sci. Adv., vol. 6, no. 36, 
Sept. 2020, Art. no. eaba0959. 

[166] X.-F. Mo, B. Zhu, Z.-F. Han, Y.-Z. Gui, and G.-C. Guo, 
“Faraday-Michelson system for quantum cryptography,” Opt. Lett., vol. 
30, no. 19, pp. 2632–2634, Oct. 2005. 

[167] R. J. Runser, T. E. Chapuran, P. Toliver, M. S. Goodman, R. J. Hughes, C. 
G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. 
Dallmann, “Quantum key distribution for reconfigurable optical 
networks,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, Mar. 
2006, Art. no. OFL1. 

[168] T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. 
Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. 
Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical 
networking for quantum key distribution and quantum communications,” 
New J. Phys., vol. 11, no. 10, Oct. 2009, Art. no. 105001. 

[169] A. Mirza and F. Petruccione, “Recent findings from the quantum network 
in Durban,” AIP Conf. Proc., vol. 1363, no. 1, pp. 35–38, Oct. 2011. 

[170] P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. 
Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. 
Painchault, “Field test of classical symmetric encryption with continuous 
variables quantum key distribution,” Opt. Express, vol. 20, no. 13, pp. 
14030–14041, June 2012. 

[171] A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, 
“Real-world two-photon interference and proof-of-principle quantum key 
distribution immune to detector attacks,” Phys. Rev. Lett., vol. 111, no. 13, 
Sept. 2013, Art. no. 130501. 

[172] K. Shimizu, T. Honjo, M. Fujiwara, T. Ito, K. Tamaki, S. Miki, T. 
Yamashita, H. Terai, Z. Wang, and M. Sasaki, “Performance of 
long-distance quantum key distribution over 90-km optical links installed 
in a field environment of Tokyo metropolitan area,” J. Lightwave 

Technol., vol. 32, no. 1, pp. 141–151, Jan. 2014. 
[173] Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. 

Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, 
Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Field 
test of measurement-device-independent quantum key distribution,” IEEE 

J. Sel. Top. Quantum Electron., vol. 21, no. 3, May/June 2015, Art. no. 
6600407. 

[174] A. R. Dixon, J. F. Dynes, M. Lucamarini, B. Fröhlich, A. W. Sharpe, A. 
Plews, S. Tam, Z. L. Yuan, Y. Tanizawa, H. Sato, S. Kawamura, M. 
Fujiwara, M. Sasaki, and A. J. Shields, “High speed prototype quantum 
key distribution system and long term field trial,” Opt. Express, vol. 23, 
no. 6, pp. 7583–7592, Mar. 2015. 

[175] D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. 
Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. 
Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. 
Urayama, and D. Englund, “Metropolitan quantum key distribution with 
silicon photonics,” Phys. Rev. X, vol. 8, no. 2, Apr. 2018, Art. no. 021009. 

[176] D. Bacco, I. Vagniluca, B. D. Lio, N. Biagi, A. D. Frera, D. Calonico, C. 
Toninelli, F. S. Cataliotti, M. Bellini, L. K. Oxenløwe, and A. Zavatta, 
“Field trial of a three-state quantum key distribution scheme in the 
Florence metropolitan area,” EPJ Quantum Technol., vol. 6, Oct. 2019, 
Art. no. 5. 

[177] T. Zhang, X.-F. Mo, Z.-F. Han, and G.-C. Guo, “Extensible router for a 
quantum key distribution network,” Phys. Lett. A, vol. 372, no. 22, pp. 
3957–3962, May 2008. 

[178] V. Martin, A. Aguado, P. Salas, A. L. Sanz, J. P. Brito, D. R. Lopez, V. 
Lopez, A. Pastor, J. Folgueira, H. H. Brunner, S. Bettelli, F. Fung, L. C. 
Comandar, D. Wang, A. Poppe, and M. Peev, “The Madrid quantum 
network: A quantum-classical integrated infrastructure,” in Proc. OSA 

Adv. Photon. Cong., Burlingame, CA, USA, July 2019, Art. no. QtW3E.5. 
[179] F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. 

Grangier, “Quantum key distribution using gaussian-modulated coherent 
states,” Nature, vol. 421, no. 6920, pp. 238–241, Jan. 2003. 

[180] S. Wang, W. Chen, Z.-Q. Yin, H.-W. Li, D.-Y. He, Y.-H. Li, Z. Zhou, 
X.-T. Song, F.-Y. Li, D. Wang, H. Chen, Y.-G. Han, J.-Z. Huang, J.-F. 
Guo, P.-L. Hao, M. Li, C.-M. Zhang, D. Liu, W.-Y. Liang, C.-H. Miao, P. 
Wu, G.-C. Guo, and Z.-F. Han, “Field and long-term demonstration of a 
wide area quantum key distribution network,” Opt. Express, vol. 22, no. 
18, pp. 21739–21756, Sept. 2014. 

[181] Q. Zhang, F. Xu, L. Li, N.-L. Liu, and J.-W. Pan, “Quantum information 
research in China,” Quantum Sci. Technol., vol. 4, no. 4, Nov. 2019, Art. 
no. 040503. 

[182] Y. Mao, B.-X. Wang, C. Zhao, G. Wang, R. Wang, H. Wang, F. Zhou, J. 
Nie, Q. Chen, Y. Zhao, Q. Zhang, J. Zhang, T.-Y. Chen, and J.-W. Pan, 
“Integrating quantum key distribution with classical communications in 
backbone fiber network,” Opt. Express, vol. 26, no. 5, pp. 6010–6020, 
Mar. 2018. 

[183] New Quantum Communication Landline Connecting East, Central China 



 
 

49 

Put into Service [Online]. Available: http://www.globaltimes.cn/content/ 
1127200.shtml. 

[184] J.-P. Chen, C. Zhang, Y. Liu, C. Jiang, W.-J. Zhang, Z.-Y. Han, S.-Z. Ma, 
X.-L. Hu, Y.-H. Li, H. Liu, F. Zhou, H.-F. Jiang, T.-Y. Chen, H. Li, L.-X. 
You, Z. Wang, X.-B. Wang, Q. Zhang, and J.-W. Pan, “Twin-field 
quantum key distribution over a 511 km optical fibre linking two distant 
metropolitan areas,” Nature Photon., vol. 15, no. 8, pp. 570–575, Aug. 
2021. 

[185] H. Qin, “Towards large-scale quantum key distribution network and its 
applications,” in Proc. ITU Workshop on Quantum Information 

Technology (QIT) for Networks, Shanghai, China, June 2019. 
[186] Quantum Network from Boston to Washington DC in the Works [Online]. 

Available: https://quantumxc.com/media-coverage/quantum-network-fro 
m-boston-to-washington-dc-in-the-works/. 

[187] Building a Globe-Spanning Quantum Internet [Online]. Available: 
https://www.theverge.com/2014/11/18/7214483/quantum-networks-expa
nd-across-three-continents. 

[188] Quantum Communications Hub Annual Report 2018-2019 [Online]. 
Available: https://www.quantumcommshub.net/wp-content/uploads/202 
0/09/FINAL-for-web_Quantum-Hub_report_condensed_2019.pdf. 

[189] P. Knight and I. Walmsley, “UK national quantum technology 
programme,” Quantum Sci. Technol., vol. 4, no. 4, Oct. 2019, Art. no. 
040502. 

[190] OpenQKD [Online]. Available: https://openqkd.eu/. 
[191] 7 Thousand km of Quantum Networks to be Stretched in Russia by the 

End of 2024 [Online]. Available: https://ict.moscow/en/news/7000-km-of 
-quantum-networks-to-be-stretched-in-russia-by-the-end-of-2024/. 

[192] A. K. Fedorov, A. V. Akimov, J. D. Biamonte, A. V. Kavokin, F. Y. 
Khalili, E. O. Kiktenko, N. N. Kolachevsky, Y. V. Kurochkin, A. I. 
Lvovsky, A. N. Rubtsov, G. V. Shlyapnikov, S. S. Straupe, A. V. Ustinov, 
and A. M. Zheltikov, “Quantum technologies in Russia,” Quantum Sci. 

Technol., vol. 4, no. 4, Oct. 2019, Art. no. 040501. 
[193] N. Walenta and L. Oesterling, “Quantum networks: Photons hold key to 

data security,” Photon. Spectra, vol. 50, no. 5, pp. 40–44, May 2016. 
[194] Toshiba to Lead Joint R&D Project Commissioned by Japan’s MIC to 

Develop Global Quantum Cryptography Communications Network 
[Online]. Available: https://www.global.toshiba/ww/technology/corporat 
e/rdc/rd/topics/20/2007-02.html. 

[195] Y. Yamamoto, M. Sasaki, and H. Takesue, “Quantum information science 
and technology in Japan,” Quantum Sci. Technol., vol. 4, no. 2, Feb. 2019, 
Art. no. 020502. 

[196] R. Bedington, J. M. Arrazola, and A. Ling, “Progress in satellite quantum 
key distribution,” npj Quantum Inf., vol. 3, Aug. 2017, Art. no. 30. 

[197] Governments Ally for Federated Quantum Encryption Satellite Network 
[Online]. Available: https://spacenews.com/governments-ally-for-federat 
ed-quantum-encryption-satellite-network/. 

[198] R. J. Hughes, J. E. Nordholt, K. P. McCabe, R. T. Newell, C. G. Peterson, 
and R. D. Somma, “Network-centric quantum communications with 
application to critical infrastructure protection,” arXiv: 1305.0305, 2013. 

[199] A. Aguado, V. Martin, D. Lopez, M. Peev, J. Martinez-Mateo, J. L. 
Rosales, F. de la Iglesia, M. Gomez, E. Hugues-Salas, A. Lord, R. 
Nejabati, and D. Simeonidou, “Quantum-aware software defined 
networks,” in Proc. 6th Int. Conf. Quantum Crypt., Washington, DC, 
USA, Sept. 2016. 

[200] Y. Cao, Y. Zhao, R. Lin, X. Yu, J. Zhang, and J. Chen, “Multi-tenant 
secret-key assignment over quantum key distribution networks,” Opt. 

Express, vol. 27, no. 3, pp. 2544–2561, Feb. 2019. 
[201] Y. Cao, Y. Zhao, J. Wang, X. Yu, Z. Ma, and J. Zhang, “SDQaaS: 

Software defined networking for quantum key distribution as a service,” 
Opt. Express, vol. 27, no. 5, pp. 6892–6909, Mar. 2019. 

[202] Y. Cao, Y. Zhao, X. Yu, and J. Zhang, “Multi-tenant provisioning over 
software defined networking enabled metropolitan area quantum key 
distribution networks,” J. Opt. Soc. Am. B, vol. 36, no. 3, pp. B31–B40, 
Mar. 2019. 

[203] W. Maeda, A. Tanaka, S. Takahashi, A. Tajima, and A. Tomita, 
“Technologies for quantum key distribution networks integrated with 
optical communication networks,” IEEE J. Sel. Top. Quantum Electron., 
vol. 15, no. 6, pp. 1591–1601, Nov./Dec. 2009. 

[204] Y. Cao, Y. Zhao, C. Colman-Meixner, X. Yu, and J. Zhang, “Key on 
demand (KoD) for software-defined optical networks secured by quantum 
key distribution (QKD),” Opt. Express, vol. 25, no. 22, pp. 26453–26467, 
Oct. 2017. 

[205] Y. Cao, Y. Zhao, X. Yu, and Y. Wu, “Resource assignment strategy in 

optical networks integrated with quantum key distribution,” J. Opt. 

Commun. Netw., vol. 9, no. 11, pp. 995–1004, Nov. 2017. 
[206] A. Tajima, T. Kondoh, T. Ochi, M. Fujiwara, K. Yoshino, H. Iizuka, T. 

Sakamoto, A. Tomita, E. Shimamura, S. Asami, and M. Sasaki, “Quantum 
key distribution network for multiple applications,” Quantum Sci. 

Technol., vol. 2, no. 3, July 2017, Art. no. 034003. 
[207] Y. Zhao, Y. Cao, W. Wang, H. Wang, X. Yu, J. Zhang, M. Tornatore, Y. 

Wu, and B. Mukherjee, “Resource allocation in optical networks secured 
by quantum key distribution,” IEEE Commun. Mag., vol. 56, no. 8, pp. 
130–137, Aug. 2018. 

[208] Y. Cao, Y. Zhao, J. Wang, X. Yu, Z. Ma, and J. Zhang, “KaaS: Key as a 
service over quantum key distribution integrated optical networks,” IEEE 

Commun. Mag., vol. 57, no. 5, pp. 152–159, May 2019.  
[209] Y. Tanizawa, R. Takahashi, H. Sato, and A. R. Dixon, “An approach to 

integrate quantum key distribution technology into standard secure 
communication applications,” in Proc. 9th Int. Conf. Ubiquitous and 

Future Networks, Milan, Italy, July 2017, pp. 880–886. 
[210] A. Aguado, E. Hugues-Salas, P. A. Haigh, J. Marhuenda, A. B. Price, P. 

Sibson, J. E. Kennard, C. Erven, J. G. Rarity, M. G. Thompson, A. Lord, R. 
Nejabati, and D. Simeonidou, “Secure NFV orchestration over an 
SDN-controlled optical network with time-shared quantum key 
distribution resources,” J. Lightwave Technol., vol. 35, no. 8, pp. 
1357–1362, Apr. 2017. 

[211] K. Dong, Y. Zhao, X. Yu, A. Nag, and J. Zhang, “Auxiliary graph based 
routing, wavelength, and time-slot assignment in metro quantum optical 
networks with a novel node structure,” Opt. Express, vol. 28, no. 5, pp. 
5936–5952, Mar. 2020. 

[212] M. Mehic, P. Fazio, S. Rass, O. Maurhart, M. Peev, A. Poppe, J. Rozhon, 
M. Niemiec, and M. Voznak, “A novel approach to quality-of-service 
provisioning in trusted relay quantum key distribution networks,” 
IEEE/ACM Trans. Netw., vol. 28, no. 1, pp. 168–181, Feb. 2020.  

[213] “Quantum key distribution (QKD); Components and internal interfaces,” 
ETSI GR QKD 003 V2.1.1, Mar. 2018. 

[214] D. Levi, P. Meyer, and B. Stewart, “Simple network management protocol 
(SNMP) applications,” IETF RFC 3413, Dec. 2002. 

[215] D. Harrington and J. Schoenwaelder, “Transport subsystem for the simple 
network management protocol (SNMP),” IETF RFC 5590, June 2009. 

[216] Common Object Request Broker Architecture [Online]. Available: 
https://www.omg.org/spec/CORBA/. 

[217] “Quantum key distribution (QKD); Control interface for software defined 
networks,” ETSI GS QKD 015 V1.1.1, Mar. 2021. 

[218] “Quantum key distribution networks - Software defined networking 
control,” Recommendation ITU-T Y.3805, Dec. 2021. 

[219] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. 
Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation in 
campus networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 
2, pp. 69–74, Mar. 2008. 

[220] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network 
configuration protocol (NETCONF),” IETF RFC 6241, June 2011. 

[221] “Quantum key distribution (QKD); Application interface,” ETSI GS 
QKD 004 V2.1.1, Aug. 2020. 

[222] “Quantum key distribution (QKD); Protocol and data format of 
REST-based key delivery API,” ETSI GS QKD 014 V1.1.1, Feb. 2019.  

[223] P. D. Townsend, “Simultaneous quantum cryptographic key distribution 
and conventional data transmission over installed fibre using 
wavelength-division multiplexing,” Electron. Lett., vol. 33, no. 3, pp. 
188–190, Jan. 1997. 

[224] A. Bahrami, A. Lord, and T. P. Spiller, “Quantum key distribution 
integration with optical dense wavelength division multiplexing: A 
review,” IET Quantum Commun., vol. 1, no. 1, pp. 9–15, July 2020. 

[225] R. J. Runser, T. Chapuran, P. Toliver, N. A. Peters, M. S. Goodman, J. T. 
Kosloski, N. Nweke, S. R. McNown, R. J. Hughes, D. Rosenberg, C. G. 
Peterson, K. P. McCabe, J. E. Nordholt, K. Tyagi, P. A. Hiskett, and N. 
Dallmann, “Progress toward quantum communications networks: 
Opportunities and challenges,” Proc. SPIE, Optoelectronic Integrated 

Circuits IX, vol. 6476, Feb. 2007, Art. no. 64760I. 
[226] H. Rohde, S. Smolorz, A. Poppe, and H. Huebel, “Quantum key 

distribution integrated into commercial WDM systems,” in Proc. Opt. 

Fiber Commun. Conf., San Diego, CA, USA, Feb. 2008, Art. no. OTuP1. 
[227] G. B. Xavier, G. V. de Faria, G. P. Temporão, and J. P. von der Weid, 

“Scattering effects on QKD employing simultaneous classical and 
quantum channels in telecom optical fibers in the C-band,” AIP Conf. 

Proc., vol. 1110, no. 1, pp. 327–330, Apr. 2009. 



 
 

50 

[228] B. Qi, W. Zhu, L. Qian, and H.-K. Lo, “Feasibility of quantum key 
distribution through a dense wavelength division multiplexing network,” 
New J. Phys., vol. 12, no. 10, Oct. 2010, Art. no. 103042. 

[229] H. Kawahara, A. Medhipour, and K. Inoue, “Effect of spontaneous 
Raman scattering on quantum channel wavelength-multiplexed with 
classical channel,” Opt. Commun., vol. 284, no. 2, pp. 691–696, Jan. 
2011. 

[230] T. F. da Silva, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, 
“Impact of Raman scattered noise from multiple telecom channels on 
fiber-optic quantum key distribution systems,” J. Lightwave Technol., vol. 
32, no. 13, pp. 2332–2339, July 2014. 

[231] B. Fröhlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, S. W.-B. Tam, Z. 
Yuan, and A. J. Shields, “Quantum secured gigabit optical access 
networks,” Sci. Rep., vol. 5, Dec. 2015, Art. no. 18121. 

[232] Y. Sun, Y. Lu, J. Niu, and Y. Ji, “Reduction of FWM noise in 
WDM-based QKD systems using interleaved and unequally spaced 
channels,” Chin. Opt. Lett., vol. 14, no. 6, June 2016, Art. no. 060602. 

[233] J.-N. Niu, Y.-M. Sun, C. Cai, and Y.-F. Ji, “Optimized channel allocation 
scheme for jointly reducing four-wave mixing and Raman scattering in 
the DWDM-QKD system,” Appl. Opt., vol. 57, no. 27, pp. 7987–7996, 
Sept. 2018. 

[234] P. Toliver, R. J. Runser, T. E. Chapuran, S. McNown, M. S. Goodman, J. 
Jackel, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, 
P. Hiskett, and N. Dallman, “Impact of spontaneous anti-Stokes Raman 
scattering on QKD+DWDM networking,” in Proc. 17th Annu. Meeting 

IEEE Lasers and Electro-Optics Soc., Rio Grande, Puerto Rico, Nov. 
2004, pp. 491–492. 

[235] N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. 
Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. 
Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental 
characterization of the separation between wavelength-multiplexed 
quantum and classical communication channels,” Appl. Phys. Lett., vol. 
87, no. 17, Oct. 2005, Art. no. 174103. 

[236] R. J. Runser, T. E. Chapuran, P. Toliver, M. S. Goodman, J. Jackel, N. 
Nweke, S. R. McNown, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. 
Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Demonstration of 1.3 
µm quantum key distribution (QKD) compatibility with 1.5 µm 
metropolitan wavelength division multiplexed (WDM) systems,” in Proc. 

Opt. Fiber Commun. Conf., Anaheim, CA, USA, Mar. 2005, Art. no. 
OWI2. 

[237] N. I. Nweke, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, 
P. Toliver, M. S. Goodman, J. Jackel, R. J. Hughes, C. G. Peterson, and J. 
E. Nordholt, “EDFA bypass and filtering architecture enabling 
QKD+WDM coexistence on mid-span amplified links,” in Proc. Conf. 

Lasers and Electro-Optics, Long Beach, CA, USA, May 2006, Art. no. 
CWQ7. 

[238] S. Aleksic, F. Hipp, D. Winkler, A. Poppe, B. Schrenk, and G. Franzl, 
“Perspectives and limitations of QKD integration in metropolitan area 
networks,” Opt. Express, vol. 23, no. 8, pp. 10359–10373, Apr. 2015. 

[239] L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, 
Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance 
copropagation of quantum key distribution and terabit classical optical 
data channels,” Phys. Rev. A, vol. 95, no. 1, Jan. 2017, Art. no. 012301. 

[240] T. J. Xia, D. Z. Chen, G. A. Wellbrock, A. Zavriyev, A. C. Beal, and K. M. 
Lee, “In-band quantum key distribution (QKD) on fiber populated by 
high-speed classical data channels,” in Proc. Opt. Fiber Commun. Conf., 
Anaheim, CA, USA, Mar. 2006, Art. no. OTuJ7. 

[241] N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. 
G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. 
E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 
nm QKD with strong classical channels in reconfigurable networking 
environments,” New J. Phys., vol. 11, no. 4, Apr. 2009, Art. no. 045012.  

[242] P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum 
key distribution and 1 Gbps data encryption over a single fibre,” New J. 

Phys., vol. 12, no. 6, June 2010, Art. no. 063027. 
[243] I. Choi, R. J. Young, and P. D. Townsend, “Quantum key distribution on a 

10Gb/s WDM-PON,” Opt. Express, vol. 18, no. 9, pp. 9600–9612, Apr. 
2010. 

[244] K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, 
R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s 
dense wavelength division multiplexing networks,” Appl. Phys. Lett., vol. 
104, no. 5, Feb. 2014, Art. no. 051123. 

[245] R. Kumar, H. Qin, and R. Alléaume, “Coexistence of continuous variable 

QKD with intense DWDM classical channels,” New J. Phys., vol. 17, no. 
4, Apr. 2015, Art. no. 043027. 

[246] F. Karinou, L. Comandar, H. H. Brunner, D. Hillerkuss, F. Fung, S. 
Bettelli, S. Mikroulis, D. Wang, Q. Yi, M. Kuschnerov, C. Xie, A. Poppe, 
and M. Peev, “Experimental evaluation of the impairments on a QKD 
system in a 20-channel WDM co-existence scheme,” in Proc. IEEE 

Photon. Soc. Summer Top. Meeting Ser., San Juan, Puerto Rico, July 2017, 
pp. 145–146. 

[247] T. A. Eriksson, T. Hirano, M. Ono, M. Fujiwara, R. Namiki, K. Yoshino, 
A. Tajima, M. Takeoka, and M. Sasaki, “Coexistence of continuous 
variable quantum key distribution and 7×12.5 Gbit/s classical channels,” 
in Proc. IEEE Photon. Soc. Summer Top. Meeting Ser., Waikoloa Village, 
HI, USA, July 2018, pp. 71–72. 

[248] T. A. Eriksson, T. Hirano, G. Rademacher, B. J. Puttnam, R. S. Luís, M. 
Fujiwara, R. Namiki, Y. Awaji, M. Takeoka, N. Wada, and M. Sasaki, 
“Joint propagation of continuous variable quantum key distribution and 
18 × 24.5 Gbaud PM-16QAM channels,” in Proc. Eur. Conf. Opt. 

Commun., Rome, Italy, Sept. 2018.  
[249] F. Karinou, H. H. Brunner, C.-H. F. Fung, L. C. Comandar, S. Bettelli, D. 

Hillerkuss, M. Kuschnerov, S. Mikroulis, D. Wang, C. Xie, M. Peev, and 
A. Poppe, “Toward the integration of CV quantum key distribution in 
deployed optical networks,” IEEE Photon. Technol. Lett., vol. 30, no. 7, 
pp. 650–653, Apr. 2018. 

[250] T. A. Eriksson, T. Hirano, B. J. Puttnam, G. Rademacher, R. S. Luís, M. 
Fujiwara, R. Namiki, Y. Awaji, M. Takeoka, N. Wada, and M. Sasaki, 
“Wavelength division multiplexing of continuous variable quantum key 
distribution and 18.3 Tbit/s data channels,” Commun. Phys., vol. 2, Jan. 
2019, Art. no. 9. 

[251] R. Valivarthi, P. Umesh, C. John, K. A. Owen, V. B. Verma, S. W. Nam, 
D. Oblak, Q. Zhou, and W. Tittel, “Measurement-device-independent 
quantum key distribution coexisting with classical communication,” 
Quantum Sci. Technol., vol. 4, no. 4, July 2019, Art. no. 045002. 

[252] D. Milovančev, N. Vokić, F. Laudenbach, C. Pacher, H. Hübel, and B. 
Schrenk, “Spectrally-shaped continuous-variable QKD operating at 500 
MHz over an optical pipe lit by 11 DWDM channels,” in Proc. Opt. Fiber 

Commun. Conf., San Diego, CA, USA, Mar. 2020, Art. no. T3D.4. 
[253] K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. 

V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key 
distribution and data on optical fiber,” Phys. Rev. X, vol. 2, no. 4, Nov. 
2012, Art. no. 041010. 

[254] D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. 
Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure 
key rate,” Opt. Express, vol. 23, no. 13, pp. 17511–17519, June 2015. 

[255] L.-J. Wang, L.-K. Chen, L. Ju, M.-L. Xu, Y. Zhao, K. Chen, Z.-B. Chen, 
T.-Y. Chen, and J.-W. Pan, “Experimental multiplexing of quantum key 
distribution with classical optical communication,” Appl. Phys. Lett., vol. 
106, no. 8, Feb. 2015, Art. no. 081108. 

[256] S. Kleis, J. Steinmayer, R. H. Derksen, and C. G. Schaeffer, 
“Experimental investigation of heterodyne quantum key distribution in 
the S-band embedded in a commercial DWDM system,” in Proc. Opt. 

Fiber Commun. Conf., San Diego, CA, USA, Mar. 2019, Art. no. Th1J.3. 
[257] K. Yoshino, M. Fujiwara, A. Tanaka, S. Takahashi, Y. Nambu, A. Tomita, 

S. Miki, T. Yamashita, Z. Wang, M. Sasaki, and A. Tajima, “High-speed 
wavelength-division multiplexing quantum key distribution system,” Opt. 

Lett., vol. 37, no. 2, pp. 223–225, Jan. 2012. 
[258] K. Yoshino, T. Ochi, M. Fujiwara, M. Sasaki, and A. Tajima, 

“Maintenance-free operation of WDM quantum key distribution system 
through a field fiber over 30 days,” Opt. Express, vol. 21, no. 25, pp. 
31395–31401, Dec. 2013. 

[259] T. A. Eriksson, R. S. Luís, B. J. Puttnam, G. Rademacher, M. Fujiwara, Y. 
Awaji, H. Furukawa, N. Wada, M. Takeoka, and M. Sasaki, “Wavelength 
division multiplexing of 194 continuous variable quantum key 
distribution channels,” J. Lightwave Technol., vol. 38, no. 8, pp. 
2214–2218, Apr. 2020. 

[260] A. Tanaka, M. Fujiwara, S. W. Nam, Y. Nambu, S. Takahashi, W. Maeda, 
K. Yoshino, S. Miki, B. Baek, Z. Wang, A. Tajima, M. Sasaki, and A. 
Tomita, “Ultra fast quantum key distribution over a 97 km installed 
telecom fiber with wavelength division multiplexing clock 
synchronization,” Opt. Express, vol. 16, no. 15, pp. 11354–11360, July 
2008. 

[261] I. Choi, Y. R. Zhou, J. F. Dynes, Z. Yuan, A. Klar, A. Sharpe, A. Plews, M. 
Lucamarini, C. Radig, J. Neubert, H. Griesser, M. Eiselt, C. Chunnilall, G. 
Lepert, A. Sinclair, J.-P. Elbers, A. Lord, and A. Shields, “Field trial of a 



 
 

51 

quantum secured 10Gb/s DWDM transmission system over a single 
installed fiber,” Opt. Express, vol. 22, no. 19, pp. 23121–23128, Sept. 
2014. 

[262] S. Bahrani, M. Razavi, and J. A. Salehi, “Orthogonal frequency-division 
multiplexed quantum key distribution,” J. Lightwave Technol., vol. 33, no. 
23, pp. 4687–4698, Dec. 2015. 

[263] N. Yu, Z. Dong, J. Wang, Z. Wei, and Z. Zhang, “Impact of spontaneous 
Raman scattering on quantum channel wavelength-multiplexed with 
classical channel in time domain,” Chin. Opt. Lett., vol. 12, no. 10, Oct. 
2014, Art. no. 102703. 

[264] A. Ortigosa-Blanch and J. Capmany, “Subcarrier multiplexing optical 
quantum key distribution,” Phys. Rev. A, vol. 73, no. 2, Feb. 2006, Art. no. 
024305. 

[265] J. Capmany and C. R. Fernandez-Pousa, “Analysis of passive optical 
networks for subcarrier multiplexed quantum key distribution,” IEEE 

Trans. Microwave Theory Tech., vol. 58, no. 11, pp. 3220–3228, Nov. 
2010. 

[266] J. Mora, W. Amaya, A. Ruiz-Alba, A. Martinez, D. Calvo, V. 
García-Muñoz, and J. Capmany, “Simultaneous transmission of 20x2 
WDM/SCM-QKD and 4 bidirectional classical channels over a PON,” 
Opt. Express, vol. 20, no. 15, pp. 16358–16365, July 2012. 

[267] A. Ruiz-Alba, J. Mora, W. Amava, A. Martínez, V. García-Muñoz, D. 
Calvo, and J. Capmany, “Microwave photonics parallel quantum key 
distribution,” IEEE Photon. J., vol. 4, no. 3, pp. 931–942, June 2012. 

[268] M. Ureña, I. Gasulla, F. J. Fraile, and J. Capmany, “Modeling optical fiber 
space division multiplexed quantum key distribution systems,” Opt. 

Express, vol. 27, no. 5, pp. 7047–7063, Mar. 2019. 
[269] C. Cai, Y. Sun, and Y. Ji, “Intercore spontaneous Raman scattering impact 

on quantum key distribution in multicore fiber,” New J. Phys., vol. 22, no. 
8, Aug. 2020, Art. no. 083020. 

[270] G. B. Xavier and G. Lima, “Quantum information processing with 
space-division multiplexing optical fibres,” Commun. Phys., vol. 3, Jan. 
2020, Art. no. 9. 

[271] C. Cai, Y. Sun, and Y. Ji, “Simultaneous long-distance transmission of 
discrete-variable quantum key distribution and classical optical 
communication,” IEEE Trans. Commun., vol. 69, no. 5, pp. 3222–3234, 
May 2021. 

[272] W. Kong, Y. Sun, C. Cai, and Y. Ji, “Impact of classical modulation 
signals on quantum key distribution over multicore fiber,” J. Lightwave 

Technol., vol. 39, no. 13, pp. 4341–4350, July 2021. 
[273] J. F. Dynes, S. J. Kindness, S. W.-B. Tam, A. Plews, A. W. Sharpe, M. 

Lucamarini, B. Fröhlich, Z. L. Yuan, R. V. Penty, and A. J. Shields, 
“Quantum key distribution over multicore fiber,” Opt. Express, vol. 24, 
no. 8, pp. 8081–8087, Apr. 2016. 

[274] R. Lin, A. Udalcovs, O. Ozolins, X. Pang, L. Gan, L. Shen, M. Tang, S. Fu, 
S. Popov, C. Yang, W. Tong, D. Liu, T. F. da Silva, G. B. Xavier, and J. 
Chen, “Telecom compatibility validation of quantum key distribution 
co-existing with 112 Gbps/λ/core data transmission in non-trench and 
trench-assistant multicore fibers,” in Proc. Eur. Conf. Opt. Commun., 
Rome, Italy, Sept. 2018. 

[275] E. Hugues-Salas, R. Wang, G. T. Kanellos, R. Nejabati, and D. 
Simeonidou, “Co-existence of 9.6 Tb/s classical channels and a quantum 
key distribution (QKD) channel over a 7-core multicore optical fibre,” in 
Proc. IEEE British and Irish Conf. Opt. Photon., London, UK, Dec. 2018. 

[276] T. A. Eriksson, B. J. Puttnam, G. Rademacher, R. S. Luís, M. Fujiwara, M. 
Takeoka, Y. Awaji, M. Sasaki, and N. Wada, “Crosstalk impact on 
continuous variable quantum key distribution in multicore fiber 
transmission,” IEEE Photon. Technol. Lett., vol. 31, no. 6, pp. 467–470, 
Mar. 2019. 

[277] C. Cai, Y. Sun, Y. Zhang, P. Zhang, J. Niu, and Y. Ji, “Experimental 
wavelength-space division multiplexing of quantum key distribution with 
classical optical communication over multicore fiber,” Opt. Express, vol. 
27, no. 4, pp. 5125–5135, Feb. 2019. 

[278] D. Bacco, B. D. Lio, D. Cozzolino, F. D. Ros, X. Guo, Y. Ding, Y. Sasaki, 
K. Aikawa, S. Miki, H. Terai, T. Yamashita, J. S. Neergaard-Nielsen, M. 
Galili, K. Rottwitt, U. L. Andersen, T. Morioka, and L. K. Oxenløwe, 
“Boosting the secret key rate in a shared quantum and classical fibre 
communication system,” Commun. Phys., vol. 2, Nov. 2019, Art. no. 140. 

[279] R. Lin, A. Udalcovs, O. Ozolins, X. Pang, L. Gan, M. Tang, S. Fu, S. 
Popov, T. F. da Silva, G. B. Xavier, and J. Chen, “Telecommunication 
compatibility evaluation for co-existing quantum key distribution in 
homogenous multicore fiber,” IEEE Access, vol. 8, pp. 78836–78846, 
May 2020. 

[280] E. Hugues-Salas, O. Alia, R. Wang, K. Rajkumar, G. T. Kanellos, R. 
Nejabati, and D. Simeonidou, “11.2 Tb/s classical channel coexistence 
with DV-QKD over a 7-core multicore fiber,” J. Lightwave Technol., vol. 
38, no. 18, pp. 5064–5070, Sept. 2020. 

[281] B.-X. Wang, Y. Mao, L. Shen, L. Zhang, X.-B. Lan, D. Ge, Y. Gao, J. Li, 
Y.-L. Tang, S.-B. Tang, J. Zhang, T.-Y. Chen, and J.-W. Pan, 
“Long-distance transmission of quantum key distribution coexisting with 
classical optical communication over a weakly-coupled few-mode fiber,” 
Opt. Express, vol. 28, no. 9, pp. 12558–12565, Apr. 2020. 

[282] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance 
quantum communication with atomic ensembles and linear optics,” 
Nature, vol. 414, no. 6862, pp. 413–418, Nov. 2001. 

[283] W. J. Munro, K. Azuma, K. Tamaki, and K. Nemoto, “Inside quantum 
repeaters,” IEEE J. Sel. Top. Quantum Electron., vol. 21, no. 3, May/June 
2015, Art. no. 6400813. 

[284] W. J. Munro, A. M. Stephens, S. J. Devitt, K. A. Harrison, and K. Nemoto, 
“Quantum communication without the necessity of quantum memories,” 
Nature Photon., vol. 6, no. 11, pp. 777–781, Nov. 2012. 

[285] K. Azuma, K. Tamaki, and H.-K. Lo, “All-photonic quantum repeaters,” 
Nature Commun., vol. 6, Apr. 2015, Art. no. 6787. 

[286] R. Van Meter, T. D. Ladd, W. J. Munro, and K. Nemoto, “System design 
for a long-line quantum repeater,” IEEE/ACM Trans. Netw., vol. 17, no. 3, 
pp. 1002–1013, June 2009. 

[287] Y. Hasegawa, R. Ikuta, N. Matsuda, K. Tamaki, H.-K. Lo, T. Yamamoto, 
K. Azuma, and N. Imoto, “Experimental time-reversed adaptive Bell 
measurement towards all-photonic quantum repeaters,” Nature Commun., 
vol. 10, Jan. 2019, Art. no. 378. 

[288] Z.-D. Li, R. Zhang, X.-F. Yin, L.-Z. Liu, Y. Hu, Y.-Q. Fang, Y.-Y. Fei, X. 
Jiang, J. Zhang, L. Li, N.-L. Liu, F. Xu, Y.-A. Chen, and J.-W. Pan, 
“Experimental quantum repeater without quantum memory,” Nature 

Photon., vol. 13, no. 9, pp. 644–648, Sept. 2019. 
[289] S. Kumar, N. Lauk, and C. Simon, “Towards long-distance quantum 

networks with superconducting processors and optical links,” Quantum 

Sci. Technol., vol. 4, no. 4, July 2019, Art. no. 045003. 
[290] S. Pirandola, “End-to-end capacities of a quantum communication 

network,” Commun. Phys., vol. 2, May 2019, Art. no. 51. 
[291] M. Takeoka, S. Guha, and M. M. Wilde, “Fundamental rate-loss tradeoff 

for optical quantum key distribution,” Nature Commun., vol. 5, Oct. 2014, 
Art. no. 5235. 

[292] S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, “Fundamental 
limits of repeaterless quantum communications,” Nature Commun., vol. 8, 
Apr. 2017, Art. no. 15043. 

[293] M. Minder, M. Pittaluga, G. L. Roberts, M. Lucamarini, J. F. Dynes, Z. L. 
Yuan, and A. J. Shields, “Experimental quantum key distribution beyond 
the repeaterless secret key capacity,” Nature Photon., vol. 13, no. 5, pp. 
334–338, May 2019. 

[294] S. Wang, D.-Y. He, Z.-Q. Yin, F.-Y. Lu, C.-H. Cui, W. Chen, Z. Zhou, 
G.-C. Guo, and Z.-F. Han, “Beating the fundamental rate-distance limit in 
a proof-of-principle quantum key distribution system,” Phys. Rev. X, vol. 
9, no. 2, June 2019, Art. no. 021046. 

[295] Y. Liu, Z.-W. Yu, W. Zhang, J.-Y. Guan, J.-P. Chen, C. Zhang, X.-L. Hu, 
H. Li, C. Jiang, J. Lin, T.-Y. Chen, L. You, Z. Wang, X.-B. Wang, Q. 
Zhang, and J.-W. Pan, “Experimental twin-field quantum key distribution 
through sending or not sending,” Phys. Rev. Lett., vol. 123, no. 10, Sept. 
2019, Art. no. 100505. 

[296] X. Zhong, J. Hu, M. Curty, L. Qian, and H.-K. Lo, “Proof-of-principle 
experimental demonstration of twin-field type quantum key distribution,” 
Phys. Rev. Lett., vol. 123, no. 10, Sept. 2019, Art. no. 100506. 

[297] “Quantum key distribution networks - Key management,” 
Recommendation ITU-T Y.3803, Dec. 2020. 

[298] W. Stacey, R. Annabestani, X. Ma, and N. Lütkenhaus, “Security of 
quantum key distribution using a simplified trusted relay,” Phys. Rev. A, 
vol. 91, no. 1, Jan. 2015, Art. no. 012338. 

[299] D. Elkouss, J. Martinez-Mateo, A. Ciurana, and V. Martin, “Secure 
optical networks based on quantum key distribution and weakly trusted 
repeaters,” J. Opt. Commun. Netw., vol. 5, no. 4, pp. 316–328, Apr. 2013. 

[300] X. Zou, X. Yu, Y. Zhao, A. Nag, and J. Zhang, “Collaborative routing in 
partially-trusted relay based quantum key distribution optical networks,” 
in Proc. Opt. Fiber Commun. Conf., San Diego, CA, USA, Mar. 2020, Art. 
no. M3K.4. 

[301] H.-K. Lo, W. Wang, and F. Xu, “Scalable 
measurement-device-independent quantum key distribution networks 
with untrusted relays,” in Proc. Opt. Fiber Commun. Conf., San Diego, 



 
 

52 

CA, USA, Mar. 2020, Art. no. M1E.2. 
[302] M. Razavi, N. L. Piparo, C. Panayi, and D. E. Bruschi, “Architectural 

considerations in hybrid quantum-classical networks,” in Proc. Iran 

Workshop on Commun. Inf. Theory, Tehran, Iran, May 2013. 
[303] N. L. Piparo and M. Razavi, “Long-distance trust-free quantum key 

distribution,” IEEE J. Sel. Top. Quantum Electron., vol. 21, no. 3, 
May/June 2015, Art. no. 6600508. 

[304] B. Mukherjee, I. Tomkos, M. Tornatore, P. Winzer, and Y. Zhao, Springer 

Handbook of Optical Networks. Springer International Publishing, 2020.  
[305] C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, 

“Experimental quantum cryptography,” J. Cryptol., vol. 5, no. 1, pp. 3–28, 
Jan. 1992. 

[306] W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, 
G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, 
“Practical free-space quantum key distribution over 1 km,” Phys. Rev. 

Lett., vol. 81, no. 15, pp. 3283–3286, Oct. 1998. 
[307] W. T. Buttler, R. J. Hughes, S. K. Lamoreaux, G. L. Morgan, J. E. 

Nordholt, and C. G. Peterson, “Daylight quantum key distribution over 
1.6 km,” Phys. Rev. Lett., vol. 84, no. 24, pp. 5652–5655, June 2000. 

[308] J. G. Rarity, P. M. Gorman, and P. R. Tapster, “Secure key exchange over 
1.9 km free-space range using quantum cryptography,” Electron. Lett., 
vol. 37, no. 8, pp. 512–514, Apr. 2001. 

[309] R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical 
free-space quantum key distribution over 10 km in daylight and at night,” 
New J. Phys., vol. 4, no. 1, July 2002, Art. no. 43. 

[310] C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. 
Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature, 
vol. 419, no. 6906, pp. 450, Oct. 2002. 

[311] C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, 
J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, “Experimental 
free-space distribution of entangled photon pairs over 13 km: Towards 
satellite-based global quantum communication,” Phys. Rev. Lett., vol. 94, 
no. 15, Apr. 2005, Art. no. 150501. 

[312] K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. 
Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. 
Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing 
entanglement and single photons through an intra-city, free-space 
quantum channel,” Opt. Express, vol. 13, no. 1, pp. 202–209, Jan. 2005. 

[313] T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. 
Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, 
and H. Weinfurter, “Experimental demonstration of free-space 
decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett., vol. 
98, no. 1, Jan. 2007, Art. no. 010504. 

[314] L. Moli-Sanchez, A. Rodriguez-Alonso, and G. Seco-Granados, 
“Performance analysis of quantum cryptography protocols in optical 
earth-satellite and intersatellite links,” IEEE J. Sel. Areas Commun., vol. 
27, no. 9, pp. 1582–1590, Dec. 2009. 

[315] J.-P. Bourgoin, E. Meyer-Scott, B. L. Higgins, B. Helou, C. Erven, H. 
Hübel, B. Kumar, D. Hudson, I. D’Souza, R. Girard, R. Laflamme, and T. 
Jennewein, “A comprehensive design and performance analysis of low 
Earth orbit satellite quantum communication,” New J. Phys., vol. 15, no. 2, 
Feb. 2013, Art. no. 023006.  

[316] J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, 
S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. 
Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, 
K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental 
verifications towards ground-satellite quantum key distribution,” Nature 

Photon., vol. 7, no. 5, pp. 387–393, May 2013. 
[317] G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. 

Villoresi, “Experimental satellite quantum communications,” Phys. Rev. 

Lett., vol. 115, no. 4, July 2015, Art. no. 040502. 
[318] F. Steinlechner, P. Trojek, M. Jofre, H. Weier, D. Perez, T. Jennewein, R. 

Ursin, J. Rarity, M. W. Mitchell, J. P. Torres, H. Weinfurter, and V. 
Pruneri, “A high-brightness source of polarization-entangled photons 
optimized for applications in free space,” Opt. Express, vol. 20, no. 9, pp. 
9640–9649, Apr. 2012. 

[319] G. Vest, M. Rau, L. Fuchs, G. Corrielli, H. Weier, S. Nauerth, A. Crespi, 
R. Osellame, and H. Weinfurter, “Design and evaluation of a handheld 
quantum key distribution sender module,” IEEE J. Sel. Top. Quantum 

Electron., vol. 21, no. 3, May/June 2015, Art. no. 6600607. 
[320] I. Capraro, A. Tomaello, A. Dall’Arche, F. Gerlin, R. Ursin, G. Vallone, 

and P. Villoresi, “Impact of turbulence in long range quantum and 
classical communications,” Phys. Rev. Lett., vol. 109, no. 20, Nov. 2012, 

Art. no. 200502. 
[321] D. P. Naughton, R. Bedington, S. Barraclough, T. Islam, D. Griffin, B. 

Smith, J. Kurtz, A. S. Alenin, I. J. Vaughn, A. Ramana, I. Dimitrijevic, Z. 
S. Tang, C. Kurtsiefer, A. Ling, and R. Boyce, “Design considerations for 
an optical link supporting intersatellite quantum key distribution,” Opt. 

Eng., vol. 58, no. 1, Jan. 2019, Art. no. 016106. 
[322] Y. C. Tan, R. Chandrasekara, C. Cheng, and A. Ling, “Silicon avalanche 

photodiode operation and lifetime analysis for small satellites,” Opt. 

Express, vol. 21, no. 14, pp. 16946–16954, July 2013. 
[323] E. Anisimova, B. L. Higgins, J. Bourgoin, M. Cranmer, E. Choi, D. 

Hudson, L. P. Piche, A. Scott, V. Makarov, and T. Jennewein, “Mitigating 
radiation damage of single photon detectors for space applications,” EPJ 

Quantum Technol., vol. 4, May 2017, Art. no. 10. 
[324] J. Yin, Y.-H. Li, S.-K. Liao, M. Yang, Y. Cao, L. Zhang, J.-G. Ren, W.-Q. 

Cai, W.-Y. Liu, S.-L. Li, R. Shu, Y.-M. Huang, L. Deng, L. Li, Q. Zhang, 
N.-L. Liu, Y.-A. Chen, C.-Y. Lu, X.-B. Wang, F. Xu, J.-Y. Wang, C.-Z. 
Peng, A. K. Ekert, and J.-W. Pan, “Entanglement-based secure quantum 
cryptography over 1,120 kilometres,” Nature, vol. 582, no. 7813, pp. 
501–505, June 2020. 

[325] H. Takenaka, A. Carrasco-Casado, M. Fujiwara, M. Kitamura, M. Sasaki, 
and M. Toyoshima, “Satellite-to-ground quantum-limited communication 
using a 50-kg-class microsatellite,” Nature Photon., vol. 11, no. 8, pp. 
502–508, Aug. 2017. 

[326] J. A. Grieve, R. Bedington, Z. Tang, R. C. Chandrasekara, and A. Ling, 
“SpooQySats: CubeSats to demonstrate quantum key distribution 
technologies,” Acta Astronautica, vol. 151, pp. 103–106, Oct. 2018. 

[327] T. Vergoossen, S. Loarte, R. Bedington, H. Kuiper, and A. Ling, 
“Modelling of satellite constellations for trusted node QKD networks,” 
Acta Astronautica, vol. 173, pp. 164–171, Aug. 2020. 

[328] D. Huang, Y. Zhao, T. Yang, S. Rahman, X. Yu, X. He, and J. Zhang, 
“Quantum key distribution over double-layer quantum satellite 
networks,” IEEE Access, vol. 8, pp. 16087–16098, Jan. 2020. 

[329] P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. 
Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. 
O’Brien, and M. G. Thompson, “Chip-based quantum key distribution,” 
Nature Commun., vol. 8, Feb. 2017, Art. no. 13984. 

[330] A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave 
circuits,” IEEE J. Sel. Top. Quantum Electron., vol. 4, no. 6, pp. 913–924, 
Nov./Dec. 1998. 

[331] H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, 
and Y. Yamamoto, “Differential phase shift quantum key distribution 
experiment over 105 km fibre,” New J. Phys., vol. 7, no. 1, Nov. 2005, Art. 
no. 232. 

[332] E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, 
“100 km differential phase shift quantum key distribution experiment 
with low jitter up-conversion detectors,” Opt. Express, vol. 14, no. 26, pp. 
13073–13082, Dec. 2006. 

[333] H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, 
and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss 
using superconducting single-photon detectors,” Nature Photon., vol. 1, 
no. 6, pp. 343–348, June 2007. 

[334] Y. Nambu, K. Yoshino, and A. Tomita, “Quantum encoder and decoder 
for practical quantum key distribution using a planar lightwave circuit,” J. 

Mod. Opt., vol. 55, no. 12, pp. 1953–1970, July 2008. 
[335] J. L. Duligall, M. S. Godfrey, K. A. Harrison, W. J. Munro, and J. G. 

Rarity, “Low cost and compact quantum key distribution,” New J. Phys., 
vol. 8, no. 10, Oct. 2006, Art. no. 249. 

[336] P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. 
Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. 
O. Niskanen, M. G. Thompson, and J. L. O’Brien, 
“Reference-frame-independent quantum-key-distribution server with a 
telecom tether for an on-chip client,” Phys. Rev. Lett., vol. 112, no. 13, 
Apr. 2014, Art. no. 130501. 

[337] A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. 
Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” 
IEEE J. Sel. Top. Quantum Electron., vol. 20, no. 4, July/Aug. 2014, Art. 
no. 8300112. 

[338] C. Ma, W. D. Sacher, Z. Tang, J. C. Mikkelsen, Y. Yang, F. Xu, T. 
Thiessen, H.-K. Lo, and J. K. S. Poon, “Silicon photonic transmitter for 
polarization-encoded quantum key distribution,” Optica, vol. 3, no. 11, pp. 
1274–1278, Nov. 2016. 

[339] P. Sibson, J. E. Kennard, S. Stanisic, C. Erven, J. L. O’Brien, and M. G. 
Thompson, “Integrated silicon photonics for high-speed quantum key 



 
 

53 

distribution,” Optica, vol. 4, no. 2, pp. 172–177, Feb. 2017. 
[340] D. Bacco, Y. Ding, K. Dalgaard, K. Rottwitt, and L. K. Oxenløwe, “Space 

division multiplexing chip-to-chip quantum key distribution,” Sci. Rep., 
vol. 7, Sept. 2017, Art. no. 12459. 

[341] Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt, and L. K. 
Oxenløwe, “High-dimensional quantum key distribution based on 
multicore fiber using silicon photonic integrated circuits,” npj Quantum 

Inf., vol. 3, June 2017, Art. no. 25. 
[342] M. Ziebell, M. Persechino, N. Harris, C. Galland, D. Marris-Morini, L. 

Vivien, E. Diamanti, and P. Grangier, “Towards on-chip 
continuous-variable quantum key distribution,” in Proc. Eur. Quantum 

Electron. Conf., Munich, Germany, June 2015, Art. no. JSV_4_2. 
[343] G. Zhang, J. Y. Haw, H. Cai, F. Xu, S. M. Assad, J. F. Fitzsimons, X. 

Zhou, Y. Zhang, S. Yu, J. Wu, W. Ser, L. C. Kwek, and A. Q. Liu, “An 
integrated silicon photonic chip platform for continuous-variable 
quantum key distribution,” Nature Photon., vol. 13, no. 12, pp. 839–842, 
Dec. 2019. 

[344] Y. Shen, L. Cao, X. Wang, J. Zou, W. Luo, Y. Wang, H. Cai, B. Dong, X. 
Luo, W. Fan, L. C. Kwek, and A. Liu, “On-chip continuous-variable 
quantum key distribution (CV-QKD) and homodyne detection,” in Proc. 

Opt. Fiber Commun. Conf., San Diego, CA, USA, Mar. 2020, Art. no. 
W2A.53.  

[345] H. Cai, C. M. Long, C. T. DeRose, N. Boynton, J. Urayama, R. Camacho, 
A. Pomerene, A. L. Starbuck, D. C. Trotter, P. S. Davids, and A. L. 
Lentine, “Silicon photonic transceiver circuit for high-speed 
polarization-based discrete variable quantum key distribution,” Opt. 

Express, vol. 25, no. 11, pp. 12282–12294, May 2017. 
[346] W. Geng, C. Zhang, Y. Zheng, J. He, C. Zhou, and Y. Kong, “Stable 

quantum key distribution using a silicon photonic transceiver,” Opt. 

Express, vol. 27, no. 20, pp. 29045–29054, Sept. 2019. 
[347] C.-Y. Wang, J. Gao, Z.-Q. Jiao, L.-F. Qiao, R.-J. Ren, Z. Feng, Y. Chen, 

Z.-Q. Yan, Y. Wang, H. Tang, and X.-M. Jin, “Integrated measurement 
server for measurement-device-independent quantum key distribution 
network,” Opt. Express, vol. 27, no. 5, pp. 5982–5989, Mar. 2019. 

[348] H. Semenenko, P. Sibson, A. Hart, M. G. Thompson, J. G. Rarity, and C. 
Erven, “Chip-based measurement-device-independent quantum key 
distribution,” Optica, vol. 7, no. 3, pp. 238–242, Mar. 2020. 

[349] K. Wei, W. Li, H. Tan, Y. Li, H. Min, W.-J. Zhang, H. Li, L. You, Z. 
Wang, X. Jiang, T.-Y. Chen, S.-K. Liao, C.-Z. Peng, F. Xu, and J.-W. Pan, 
“High-speed measurement-device-independent quantum key distribution 
with integrated silicon photonics,” Phys. Rev. X, vol. 10, no. 3, Aug. 2020, 
Art. no. 031030. 

[350] A. Orieux and E. Diamanti, “Recent advances on integrated quantum 
communications,” J. Opt., vol. 18, no. 8, July 2016, Art. no. 083002. 

[351] Q.-Y. Zhang, P. Xu, and S.-N. Zhu, “Quantum photonic network on 
chip,” Chin. Phys. B, vol. 27, no. 5, Apr. 2018, Art. no. 054207. 

[352] C. Lee, Z. Zhang, G. R. Steinbrecher, H. Zhou, J. Mower, T. Zhong, L. 
Wang, X. Hu, R. D. Horansky, V. B. Verma, A. E. Lita, R. P. Mirin, F. 
Marsili, M. D. Shaw, S. W. Nam, G. W. Wornell, F. N. C. Wong, J. H. 
Shapiro, and D. Englund, “Entanglement-based quantum communication 
secured by nonlocal dispersion cancellation,” Phys. Rev. A, vol. 90, no. 6, 
Dec. 2014, Art. no. 062331. 

[353] J. Nunn, L. J. Wright, C. Söller, L. Zhang, I. A. Walmsley, and B. J. Smith, 
“Large-alphabet time-frequency entangled quantum key distribution by 
means of time-to-frequency conversion,” Opt. Express, vol. 21, no. 13, pp. 
15959–15973, July 2013. 

[354] M. Mafu, A. Dudley, S. Goyal, D. Giovannini, M. McLaren, M. J. Padgett, 
T. Konrad, F. Petruccione, N. Lütkenhaus, and A. Forbes, 
“Higher-dimensional orbital-angular-momentum-based quantum key 
distribution with mutually unbiased bases,” Phys. Rev. A, vol. 88, no. 3, 
Sept. 2013, Art. no. 032305. 

[355] T. K. Paraïso, T. Roger, D. G. Marangon, I. D. Marco, M. Sanzaro, R. I. 
Woodward, J. F. Dynes, Z. Yuan, and A. J. Shields, “A photonic 
integrated quantum secure communication system,” Nature Photon., vol. 
15, no. 11, pp. 850–856, Nov. 2021. 

[356] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. 
Azodolmolky, and S. Uhlig, “Software-defined networking: A 
comprehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 
2015. 

[357] D. B. Rawat and S. R. Reddy, “Software defined networking architecture, 
security and energy efficiency: A survey,” IEEE Commun. Surveys Tuts., 
vol. 19, no. 1, pp. 325–346, 1st Quart., 2017. 

[358] T. S. Humble and R. J. Sadlier, “Software-defined quantum 

communication systems,” Proc. SPIE, Quantum Commun. Quantum Imag. 

XI, vol. 8875, Sept. 2013, Art. no. 88750R. 
[359] V. R. Dasari, R. J. Sadlier, R. Prout, B. P. Williams, and T. S. Humble, 

“Programmable multi-node quantum network design and simulation,” 
Proc. SPIE, Quantum Inf. Comput. IX, vol. 9873, May 2016, Art. no. 
98730B. 

[360] V. R. Dasari, R. J. Sadlier, B. E. Geerhart, N. A. Snow, B. P. Williams, 
and T. S. Humble, “Software-defined network abstractions and 
configuration interfaces for building programmable quantum networks,” 

Proc. SPIE, Advanced Photon Counting Techniques XI, vol. 10212, May 
2017, Art. no. 102120U. 

[361] W. Yu, B. Zhao, and Z. Yan, “Software defined quantum key distribution 
network,” in Proc. 3rd IEEE Int. Conf. Comput. Commun., Chengdu, 
China, Dec. 2017, pp. 1293–1297. 

[362] H. Zhang, D. Quan, C. Zhu, and Z. Li, “A quantum cryptography 
communication network based on software defined network,” ITM Web 

Conf., vol. 17, Feb. 2018, Art. no. 01008. 
[363] T. S. Humble, R. J. Sadlier, B. P. Williams, and R. C. Prout, 

“Software-defined quantum network switching,” Proc. SPIE, Disruptive 

Technol. Inf. Sci., vol. 10652, May 2018, Art. no. 106520B. 

[364] H. Wang, Y. Zhao, and A. Nag, “Quantum-key-distribution (QKD) 
networks enabled by software-defined networks (SDN),” Appl. Sci., vol. 9, 
no. 10, May 2019, Art. no. 2081.  

[365] Y. Cao, Y. Zhao, X. Yu, L. Cheng, Z. Li, G. Liu, and J. Zhang, 
“Experimental demonstration of end-to-end key on demand service 
provisioning over quantum key distribution networks with software 
defined networking,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, 
USA, Mar. 2019, Art. no. Th1G.4. 

[366] J. Y. Cho, T. Szyrkowiec, and H. Griesser, “Quantum key distribution as a 
service,” in Proc. 7th Int. Conf. Quantum Crypt., Cambridge, UK, Sept. 
2017. 

[367] A. Aguado, V. Lopez, J. Martinez-Mateo, M. Peev, D. Lopez, and V. 
Martin, “GMPLS network control plane enabling quantum encryption in 
end-to-end services,” in Proc. Int. Conf. Optical Network Design and 

Modelling, Budapest, Hungary, May 2017. 
[368] A. Aguado, V. Lopez, J. Martinez-Mateo, M. Peev, D. Lopez, and V. 

Martin, “Virtual network function deployment and service automation to 
provide end-to-end quantum encryption,” J. Opt. Commun. Netw., vol. 10, 
no. 4, pp. 421–430, Apr. 2018. 

[369] E. Hugues-Salas, F. Ntavou, Y. Ou, J. E. Kennard, C. White, D. Gkounis, 
K. Nikolovgenis, G. Kanellos, C. Erven, A. Lord, R. Nejabati, and D. 
Simeonidou, “Experimental demonstration of DDoS mitigation over a 
quantum key distribution (QKD) network using software defined 
networking (SDN),” in Proc. Opt. Fiber Commun. Conf., San Diego, 
California, USA, Mar. 2018, Art. no. M2A.6. 

[370] E. Hugues-Salas, F. Ntavou, D. Gkounis, G. T. Kanellos, R. Nejabati, and 
D. Simeonidou, “Monitoring and physical-layer attack mitigation in 
SDN-controlled quantum key distribution networks,” J. Opt. Commun. 

Netw., vol. 11, no. 2, pp. A209–A218, Feb. 2019. 
[371] V. I. Egorov, V. V. Chistyakov, O. L. Sadov, A. B. Vasiliev, P. V. 

Fedchenkov, V. A. Grudinin, O. I. Lazo, A. E. Shevel, N. V. Buldakov, S. 
M. Kynev, A. V. Gleim, S. E. Khoruzhnikov, and S. A. Kozlov, 
“Software-defined subcarrier wave quantum networking operated by 
OpenFlow protocol,” in Proc. 7th Int. Conf. Quantum Crypt., Cambridge, 
UK, Sept. 2017. 

[372] Y. Ou, E. Hugues-Salas, F. Ntavou, R. Wang, Y. Bi, S. Yan, G. Kanellos, 
R. Nejabati, and D. Simeonidou, “Field-trial of machine learning-assisted 
quantum key distribution (QKD) networking with SDN,” in Proc. Eur. 

Conf. Opt. Commun., Rome, Italy, Sept. 2018. 
[373] V. López, A. Gomez, A. Aguado, O. Gonzalez, V. Martin, J. P. 

Fernandez-Palacios, and D. Lopez, “Extension of the ONF transport API 
to enable quantum encryption in end-to-end services,” in Proc. Eur. Conf. 

Opt. Commun., Dublin, Ireland, Sept. 2019. 
[374] Q. Chen, E. Segev, E. Varma, G. Zhang, H. Ding, I. Busi, J. He, K. 

Sethuraman, L. Ong, N. Davis, R. Vilalta, S. Bellotti, and V. Lopez, 
“Functional requirements for transport API,” ONF TR-527, June 2016. 

[375] A. Aguado, D. R. López, A. Pastor, V. López, J. P. Brito, M. Peev, A. 
Poppe, and V. Martín, “Quantum cryptography networks in support of 
path verification in service function chains,” J. Opt. Commun. Netw., vol. 
12, no. 4, pp. B9–B19, Apr. 2020. 

[376] P. K. Tysowski, X. Ling, N. Lütkenhaus, and M. Mosca, “The 
engineering of a scalable multi-site communications system utilizing 
quantum key distribution (QKD),” Quantum Sci. Technol., vol. 3, no. 2, 



 
 

54 

Jan. 2018, Art. no. 024001. 
[377] Y. Cao, Y. Zhao, Y. Wu, X. Yu, and J. Zhang, “Time-scheduled quantum 

key distribution (QKD) over WDM networks,” J. Lightwave Technol., vol. 
36, no. 16, pp. 3382–3395, Aug. 2018. 

[378] Y. Cao, Y. Zhao, J. Wang, X. Yu, Z. Ma, and J. Zhang, “Cost-efficient 
quantum key distribution (QKD) over WDM networks,” J. Opt. Commun. 

Netw., vol. 11, no. 6, pp. 285–298, June 2019. 
[379] Y. Zhao, Y. Cao, X. Yu, and J. Zhang, “Software defined optical networks 

secured by quantum key distribution (QKD),” in Proc. IEEE/CIC Int. 

Conf. Commun. in China, Qingdao, China, Oct. 2017. 
[380] X. Ning, Y. Zhao, X. Yu, Y. Cao, Q. Ou, Z. Liu, X. Liao, and J. Zhang, 

“Soft-reservation based resource allocation in optical networks secured 
by quantum key distribution (QKD),” in Proc. Asia Commun. Photon. 

Conf., Guangzhou, China, Nov. 2017, Art. no. Su2A.66. 
[381] S. Bahrani, M. Razavi, and J. A. Salehi, “Wavelength assignment in 

hybrid quantum-classical networks,” Sci. Rep., vol. 8, Feb. 2018, Art. no. 
3456. 

[382] S. Bahrani, O. Elmabrok, G. C. Lorenzo, and M. Razavi, “Wavelength 
assignment in quantum access networks with hybrid wireless-fiber links,” 
J. Opt. Soc. Am. B, vol. 36, no. 3, pp. B99–B108, Mar. 2019. 

[383] J. Niu, Y. Sun, Y. Zhang, and Y. Ji, “Noise-suppressing channel 
allocation in dynamic DWDM-QKD networks using LightGBM,” Opt. 

Express, vol. 27, no. 22, pp. 31741–31756, Oct. 2019. 
[384] J. Niu, Y. Sun, X. Jia, and Y. Ji, “Key-size-driven wavelength resource 

sharing scheme for QKD and the time-varying data services,” J. 

Lightwave Technol., vol. 39, no. 9, pp. 2661–2672, May 2021. 
[385] R. Wang, S. K. Joshi, G. T. Kanellos, D. Aktas, J. Rarity, R. Nejabati, and 

D. Simeonidou, “AI-enabled large-scale entanglement distribution 
quantum networks,” in Proc. Opt. Fiber Commun. Conf., San Francisco, 
CA, USA, June 2021, Art. no. Tu1I.4. 

[386] C. Cai, Y. Sun, J. Niu, P. Zhang, Y. Zhang, and Y. Ji, 
“Multicore-fiber-based quantum-classical access network architecture 
with quantum signal wavelength-time division multiplexing,” J. Opt. Soc. 

Am. B, vol. 37, no. 4, pp. 1047–1053, Apr. 2020. 
[387] E. E. Moghaddam, H. Beyranvand, and J. A. Salehi, “Resource allocation 

in space division multiplexed elastic optical networks secured with 
quantum key distribution,” IEEE J. Sel. Areas Commun., vol. 39, no. 9, pp. 
2688–2700, Sept. 2021. 

[388] X. Yu, S. Li, Y. Zhao, Y. Cao, A. Nag, and J. Zhang, “Routing, core and 
wavelength allocation in multi-core-fiber-based 
quantum-key-distribution-enabled optical networks,” IEEE Access, vol. 9, 
pp. 99842–99852, July 2021. 

[389] Y. Cao, Y. Zhao, J. Li, R. Lin, J. Zhang, and J. Chen, “Multi-tenant 
provisioning for quantum key distribution networks with heuristics and 
reinforcement learning: A comparative study,” IEEE Trans. Netw. Service 

Manag., vol. 17, no. 2, pp. 946–957, June 2020. 
[390] Y. Cao, Y. Zhao, X. Yu, and J. Zhang, “Secure virtual optical network 

embedding over optical networks integrated with quantum key 
distribution,” in Proc. Asia Commun. Photon. Conf., Guangzhou, China, 
Nov. 2017, Art. no. S4C.4. 

[391] X. Yu, Y. Wang, L. Lu, Y. Zhao, H. Zhang, and J. Zhang, “VON 
embedding in elastic optical networks (EON) integrated with quantum 
key distribution (QKD),” Opt. Fiber Technol., vol. 63, Mar. 2021, Art. no. 
102486. 

[392] K. Dong, Y. Zhao, T. Yang, Y. Li, A. Nag, X. Yu, and J. Zhang, 
“Tree-topology-based quantum-key-relay strategy for secure multicast 
services,” J. Opt. Commun. Netw., vol. 12, no. 5, pp. 120–132, May 2020. 

[393] H. Wang, Y. Zhao, M. Tornatore, X. Yu, and J. Zhang, “Dynamic 
secret-key provisioning in quantum-secured passive optical networks 
(PONs),” Opt. Express, vol. 29, no. 2, pp. 1578–1596, Jan. 2021. 

[394] X. Cheng, Y. Sun, and Yuefeng Ji, “A QoS-supported scheme for 
quantum key distribution,” in Proc. Int. Conf. Advanced Intelligence and 

Awareness Internet, Shenzhen, China, Oct. 2011, pp. 220–224. 
[395] J. Moy, “OSPF version 2,” IETF RFC 2328, Apr. 1998. 
[396] M. Dianati, R. Alléaume, M. Gagnaire, and X. Shen, “Architecture and 

protocols of the future European quantum key distribution network,” 
Security Commun. Networks, vol. 1, no. 1, pp. 57–74, Feb. 2008. 

[397] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced 
distance-vector routing (DSDV) for mobile computers,” ACM SIGCOMM 

Comput. Commun. Rev., vol. 24, no. 4, pp. 234–244, Oct. 1994. 
[398] Y. Wang, Q. Li, Q. Han, and Y. Wang, “Modeling and simulation of 

practical quantum secure communication network,” Quantum Inf. 

Process., vol. 18, no. 9, Sept. 2019, Art. no. 278. 

[399] Y. Tanizawa, R. Takahashi, and A. R. Dixon, “A routing method designed 
for a quantum key distribution network,” in Proc. 8th Int. Conf. 

Ubiquitous and Future Networks, Vienna, Austria, July 2016, pp. 
208–214. 

[400] C. le Quoc, P. Bellot, and A. Demaille, “Stochastic routing in large 
grid-shaped quantum networks,” in Proc. IEEE Int. Conf. Research, 

Innovation and Vision for the Future, Hanoi, Vietnam, Mar. 2007, pp. 
166–174. 

[401] H. Wen, Z. Han, Y. Zhao, G. Guo, and P. Hong, “Multiple stochastic 
paths scheme on partially-trusted relay quantum key distribution 
network,” Sci. China Ser. F-Inf. Sci., vol. 52, no. 1, pp. 18–22, Jan. 2009. 

[402] Q. Han, L. Yu, W. Zheng, N. Cheng, and X. Niu, “A novel QKD network 
routing algorithm based on optical-path-switching,” J. Inf. Hiding 

Multimedia Signal Process., vol. 5, no. 1, pp. 13–19, Jan. 2014. 
[403] C. Yang, H. Zhang, and J. Su, “The QKD network: Model and routing 

scheme,” J. Mod. Opt., vol. 64, no. 21, pp. 2350–2362, Aug. 2017. 
[404] C. Yang, H. Zhang, and J. Su, “Quantum key distribution network: 

Optimal secret-key-aware routing method for trust relaying,” China 

Commun., vol. 15, no. 2, pp. 33–45, Feb. 2018. 
[405] M. Mehic, O. Maurhart, S. Rass, D. Komosny, F. Rezac, and M. Voznak, 

“Analysis of the public channel of quantum key distribution link,” IEEE J. 

Quantum Electron., vol. 53, no. 5, Oct. 2017, Art. no. 9300408. 
[406] M. Pant, H. Krovi, D. Towsley, L. Tassiulas, L. Jiang, P. Basu, D. 

Englund, and S. Guha, “Routing entanglement in the quantum internet,” 
npj Quantum Inf., vol. 5, Mar. 2019, Art. no. 25.  

[407] M. Caleffi, “Optimal routing for quantum networks,” IEEE Access, vol. 5, 
pp. 22299–22312, Oct. 2017. 

[408] L. Gyongyosi and S. Imre, “Decentralized base-graph routing for the 
quantum internet,” Phys. Rev. A, vol. 98, no. 2, Aug. 2018, Art. no. 
022310. 

[409] L. Gyongyosi and S. Imre, “Entanglement-gradient routing for quantum 
networks,” Sci. Rep., vol. 7, Oct. 2017, Art. no. 14255. 

[410] D. Wu, W. Yu, B. Zhao, and C. Wu, “Quantum key distribution in large 
scale quantum network assisted by classical routing information,” Int. J. 

Theor. Phys., vol. 53, no. 10, pp. 3503–3511, Oct. 2014. 
[411] K. Chakraborty, D. Elkouss, B. Rijsman, and S. Wehner, “Entanglement 

distribution in a quantum network: A multicommodity flow-based 
approach,” IEEE Trans. Quantum Engineering, vol. 1, Oct. 2020, Art. no. 
4101321. 

[412] K. Goodenough, D. Elkouss, and S. Wehner, “Optimizing repeater 
schemes for the quantum internet,” Phys. Rev. A, vol. 103, no. 3, Mar. 
2021, Art. no. 032610. 

[413] M. Pompili, S. L. N. Hermans, S. Baier, H. K. C. Beukers, P. C. 
Humphreys, R. N. Schouten, R. F. L. Vermeulen, M. J. Tiggelman, L. dos 
S. Martins, B. Dirkse, S. Wehner, and R. Hanson, “Realization of a 
multinode quantum network of remote solid-state qubits,” Science, vol. 
372, no. 6539, pp. 259–264, Apr. 2021. 

[414] H. Wang, Y. Zhao, X. Yu, Z. Ma, J. Wang, A. Nag, L. Yi, and J. Zhang, 
“Protection schemes for key service in optical networks secured by 
quantum key distribution (QKD),” J. Opt. Commun. Netw., vol. 11, no. 3, 
pp. 67–78, Mar. 2019. 

[415] Y. Wang, X. Yu, J. Li, Y. Zhao, X. Zhou, S. Xie, and J. Zhang, “A novel 
shared backup path protection scheme in time-division-multiplexing 
based QKD optical networks,” in Proc. Asia Commun. Photon. Conf., 
Chengdu, China, Nov. 2019, Art. no. M4C.6. 

[416] H. Wang, Y. Zhao, X. Yu, A. Nag, Z. Ma, J. Wang, L. Yan, and J. Zhang, 
“Resilient quantum key distribution (QKD)-integrated optical networks 
with secret-key recovery strategy,” IEEE Access, vol. 7, pp. 60079–60090, 
May 2019. 

[417] Y.-L. Tang, H.-L. Yin, X. Ma, C.-H. F. Fung, Y. Liu, H.-L. Yong, T.-Y. 
Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Source attack of 
decoy-state quantum key distribution using phase information,” Phys. Rev. 

A, vol. 88, no. 2, Aug. 2013, Art. no. 022308. 
[418] N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse 

attacks on quantum-key-distribution systems,” Phys. Rev. A, vol. 73, no. 2, 
Feb. 2006, Art. no. 022320. 

[419] N. Jain, E. Anisimova, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, 
“Trojan-horse attacks threaten the security of practical quantum 
cryptography,” New J. Phys., vol. 16, no. 12, Dec. 2014, Art. no. 123030. 

[420] N. Jain, B. Stiller, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, 
“Risk analysis of Trojan-horse attacks on practical quantum key 
distribution systems,” IEEE J. Sel. Top. Quantum Electron., vol. 21, no. 3, 
May/June 2015, Art no. 6600710. 



 
 

55 

[421] V. Makarov, “Controlling passively quenched single photon detectors by 
bright light,” New J. Phys., vol. 11, no. 6, June 2009, Art. no. 065003. 

[422] L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. 
Makarov, “Hacking commercial quantum cryptography systems by 
tailored bright illumination,” Nature Photon., vol. 4, no. 10, pp. 686–689, 
Oct. 2010. 

[423] I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. 
Makarov, “Full-field implementation of a perfect eavesdropper on a 
quantum cryptography system,” Nature Commun., vol. 2, June 2011, Art. 
no. 349. 

[424] L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, and V. Makarov, 
“Controlling a superconducting nanowire single-photon detector using 
tailored bright illumination,” New J. Phys., vol. 13, no. 11, Nov. 2011, Art. 
no. 113042. 

[425] Y.-J. Qian, D.-Y. He, S. Wang, W. Chen, Z.-Q. Yin, G.-C. Guo, and Z.-F. 
Han, “Hacking the quantum key distribution system by exploiting the 
avalanche-transition region of single-photon detectors,” Phys. Rev. 

Applied, vol. 10, no. 6, Dec. 2018, Art. no. 064062. 
[426] N. Walenta, M. Soucarros, D. Stucki, D. Caselunghe, M. Domergue, M. 

Hagerman, R. Hart, D. Hayford, R. Houlmann, M. Legré, T. McCandlish, 
J.-B. Page, M. Tourville, and R. Wolterman, “Practical aspects of security 
certification for commercial quantum technologies,” Proc. SPIE, 

Electro-Optical and Infrared Systems: Technol. Appl. XII; and Quantum 

Inf. Sci. Technol., vol. 9648, Oct. 2015, Art. no. 96480U.  
[427] L. Salvail, M. Peev, E. Diamanti, R. Alléaume, N. Lütkenhaus, and T. 

Länger, “Security of trusted repeater quantum key distribution networks,” 
J. Comput. Security, vol. 18, no. 1, pp. 61–87, Jan. 2010. 

[428] J. Cederlof and J. Larsson, “Security aspects of the authentication used in 
quantum cryptography,” IEEE Trans. Inf. Theory, vol. 54, no. 4, pp. 
1735–1741, Apr. 2008. 

[429] J. Y. Cho and H. Griesser, “Secure deployment of quantum key 
distribution in optical communication systems,” in Proc. Photon. 

Networks; 18. ITG-Symp., Leipzig, Germany, May 2017. 
[430] Y. Cao, Y. Zhao, J. Li, R. Lin, J. Zhang, and J. Chen, “Mixed relay 

placement for quantum key distribution chain deployment over optical 
networks,” in Proc. Eur. Conf. Opt. Commun., Brussels, Belgium, Dec. 
2020. 

[431] K.-I. Kitayama, M. Sasaki, S. Araki, M. Tsubokawa, A. Tomita, K. Inoue, 
K. Harasawa, Y. Nagasako, and A. Takada, “Security in photonic 
networks: Threats and security enhancement,” J. Lightwave Technol., vol. 
29, no. 21, pp. 3210–3222, Nov. 2011. 

[432] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “SDN security: A 
survey,” in Proc. IEEE SDN Future Netw. Services, Trento, Italy, Nov. 
2013. 

[433] A. Aguado, V. Lopez, J. Martinez-Mateo, T. Szyrkowiec, A. Autenrieth, 
M. Peev, D. Lopez, and V. Martin, “Hybrid conventional and quantum 
security for software defined and virtualized networks,” J. Opt. Commun. 

Netw., vol. 9, no. 10, pp. 819–825, Oct. 2017. 
[434] F. Pederzolli, F. Faticanti, and D. Siracusa, “Optimal design of practical 

quantum key distribution backbones for securing core transport 
networks,” Quantum Rep., vol. 2, no. 1, pp. 114–125, Jan. 2020. 

[435] R. Alléaume, F. Roueff, E. Diamanti, and N. Lütkenhaus, “Topological 
optimization of quantum key distribution networks,” New. J. Phys., vol. 
11, no. 7, July 2009, Art. no. 075002. 

[436] Y. Cao, Y. Zhao, J. Li, R. Lin, J. Zhang, and J. Chen, “Hybrid 
trusted/untrusted relay-based quantum key distribution over optical 
backbone networks,” IEEE J. Sel. Areas Commun., vol. 39, no. 9, pp. 
2701–2718, Sept. 2021. 

[437] P. D. Townsend, S. J. D. Phoenix, K. J. Blow, and S. M. Barnett, “Design 
of quantum cryptography systems for passive optical networks,” Electron. 

Lett., vol. 30, no. 22, pp. 1875–1877, Oct. 1994. 
[438] S. J. D. Phoenix, S. M. Barnett, P. D. Townsend, and K. J. Blow, 

“Multi-user quantum cryptography on optical networks,” J. Mod. Opt., 
vol. 42, no. 6, pp. 1155–1163, June 1995. 

[439] P. D. Kumavor, A. C. Beal, S. Yelin, E. Donkor, and B. C. Wang, 
“Comparison of four multi-user quantum key distribution schemes over 
passive optical networks,” J. Lightwave Technol., vol. 23, no. 1, pp. 
268–276, Jan. 2005. 

[440] P. D. Kumavor, A. C. Beal, E. Donkor, and B. C. Wang, “Experimental 
multiuser quantum key distribution network using a 
wavelength-addressed bus architecture,” J. Lightwave Technol., vol. 24, 
no. 8, pp. 3103–3106, Aug. 2006. 

[441] V. Fernandez, R. J. Collins, K. J. Gordon, P. D. Townsend, and G. S. 

Buller, “Passive optical network approach to gigahertz-clocked multiuser 
quantum key distribution,” IEEE J. Quantum Electron., vol. 43, no. 2, pp. 
130–138, Feb. 2007. 

[442] S. Aleksic, D. Winkler, G. Franzl, A. Poppe, B. Schrenk, and F. Hipp, 
“Quantum key distribution over optical access networks,” in Proc. 18th 

Eur. Conf. Netw. Opt. Commun. & 8th Conf. Opt. Cabling Infrastructure, 
Graz, Austria, July 2013, pp. 11–18. 

[443] J. Martinez-Mateo, A. Ciurana, and V. Martin, “Quantum key distribution 
based on selective post-processing in passive optical networks,” IEEE 

Photon. Technol. Lett., vol. 26, no. 9, pp. 881–884, May 2014. 
[444] K. Lim, H. Ko, C. Suh, and J.-K. K. Rhee, “Security analysis of quantum 

key distribution on passive optical networks,” Opt. Express, vol. 25, no. 
10, pp. 11894–11909, May 2017. 

[445] O. Elmabrok, M. Ghalaii, and M. Razavi, “Quantum-classical access 
networks with embedded optical wireless links,” J. Opt. Soc. Am. B, vol. 
35, no. 3, pp. 487–499, Mar. 2018. 

[446] M. Razavi, “Multiple-access quantum key distribution networks,” IEEE 

Trans. Commun., vol. 60, no. 10, pp. 3071–3079, Oct. 2012. 
[447] J. C. Garcia-Escartin and P. Chamorro-Posada, “Quantum spread 

spectrum multiple access,” IEEE J. Sel. Top. Quantum Electron., vol. 21, 
no. 3, May/June 2015, Art. no. 6400107. 

[448] S. Bahrani, O. Elmabrok, G. C. Lorenzo, and M. Razavi, “Finite-key 
effects in quantum access networks with wireless links,” in Proc. IEEE 

Globecom Workshops, Abu Dhabi, United Arab Emirates, Dec. 2018. 
[449] C. Cai, Y. Sun, J. Niu, and Y. Ji, “A quantum access network suitable for 

internetworking optical network units,” IEEE Access, vol. 7, pp. 
92091–92099, July 2019. 

[450] P. Xue, K. Wang, and X. Wang, “Efficient multiuser quantum 
cryptography network based on entanglement,” Sci. Rep., vol. 7, Apr. 
2017, Art. no. 45928. 

[451] “Quantum key distribution (QKD); Use cases,” ETSI GS QKD 002 
V1.1.1, June 2010.  

[452] “Quantum key distribution (QKD); Security proofs,” ETSI GS QKD 005 
V1.1.1, Dec. 2010. 

[453] “Quantum key distribution (QKD); Vocabulary,” ETSI GR QKD 007 
V1.1.1, Dec. 2018. 

[454] “Quantum key distribution (QKD); QKD module security specification,” 
ETSI GS QKD 008 V1.1.1, Dec. 2010. 

[455] “Quantum key distribution (QKD); Component characterization: 
Characterizing optical components for QKD systems,” ETSI GS QKD 
011 V1.1.1, May 2016. 

[456] “Quantum key distribution (QKD); Implementation security: Protection 
against Trojan horse attacks in one-way QKD systems,” ETSI GS QKD 
010, drafting. 

[457] “Quantum key distribution (QKD); Characterisation of optical output of 
QKD transmitter modules,” ETSI GS QKD 013, drafting. 

[458] “Quantum key distribution (QKD); Common criteria protection profile 
for QKD,” ETSI GS QKD 016, drafting. 

[459] “Quantum key distribution (QKD); Network architectures,” ETSI GR 
QKD 017, drafting. 

[460] “Quantum key distribution (QKD); Orchestration interface of software 
defined networks,” ETSI GS QKD 018, drafting. 

[461] “Quantum key distribution (QKD); Design of QKD interfaces with 
authentication,” ETSI GR QKD 019, drafting. 

[462] “Functional requirements for quantum key distribution networks,” 
Recommendation ITU-T Y.3801, Apr. 2020. 

[463] “Quantum key distribution networks - Functional architecture,” 
Recommendation ITU-T Y.3802, Dec. 2020. 

[464] “Quantum key distribution networks - Control and management,” 
Recommendation ITU-T Y.3804, Sept. 2020. 

[465] “Quantum key distribution networks - Requirements for quality of service 
assurance,” Recommendation ITU-T Y.3806, Sept. 2021. 

[466] “Quantum noise random number generator architecture,” 
Recommendation ITU-T X.1702, Nov. 2019. 

[467] “Security framework for quantum key distribution networks,” 
Recommendation ITU-T X.1710, Oct. 2020. 

[468] “Security requirements and measures for quantum key distribution 
networks - Key management,” Recommendation ITU-T X.1712, Oct. 
2021. 

[469] “Key combination and confidential key supply for quantum key 
distribution networks,” Recommendation ITU-T X.1714, Oct. 2020. 

[470] “Quantum key distribution networks - QoS parameters,” 
Recommendation ITU-T Y.3807, drafting. 



 
 

56 

[471] “Framework for integration of quantum key distribution network and 
secure storage network,” Recommendation ITU-T Y.3808, drafting. 

[472] “Quantum key distribution networks - Business role-based models,” 
Recommendation ITU-T Y.3809, drafting. 

[473] “Functional architecture of QoS assurance for quantum key distribution 
networks,” Recommendation ITU-T Y.QKDN-qos-fa, drafting. 

[474] “Security requirements and designs for quantum key distribution 
networks - Trusted node,” Recommendation ITU-T X.sec-QKDN-tn, 
drafting. 

[475] “Security requirements for integration of QKDN and secure network 
infrastructures,” Recommendation ITU-T X.sec_QKDN_intrq, drafting. 

[476] “Security requirements and measures for quantum key distribution 
networks - Control and management,” Recommendation ITU-T 
X.sec_QKDN_CM, drafting. 

[477] “Authentication and authorization in QKDN using quantum safe 
cryptography,” Recommendation ITU-T X.sec_QKDN_AA, drafting. 

[478] “Security requirements, test and evaluation methods for quantum key 
distribution – Part 1: Requirements,” ISO/IEC CD 23837-1, drafting. 

[479] “Security requirements, test and evaluation methods for quantum key 
distribution – Part 2: Evaluation and testing methods,” ISO/IEC CD 
23837-2, drafting. 

[480] W. Kozlowski, S. Wehner, R. V. Meter, B. Rijsman, A. S. Cacciapuoti, M. 
Caleffi, and S. Nagayama, “Architectural principles for a quantum 
internet,” draft-irtf-qirg-principles-07, June 2021. 

[481] C. Wang, A. Rahman, R. Li, M. Aelmans, and K. Chakraborty, 
“Applications and use cases for the quantum internet,” 
draft-irtf-qirg-quantum-internet-use-cases-07, July 2021. 

[482] “Software-defined quantum communication,” IEEE P1913, drafting. 
[483] “What is quantum key distribution?,” CSA Quantum-Safe Security 

Working Group, Aug. 2015. 
[484] T. Länger and G. Lenhart, “Standardization of quantum key distribution 

and the ETSI standardization initiative ISG-QKD,” New. J. Phys., vol. 11, 
no. 5, May 2009, Art. no. 055051. 

[485] W. Weigel and G. Lenhart, “Standardization of quantum key distribution 
in ETSI,” Wirel. Pers. Commun., vol. 58, no. 1, pp. 145–157, May 2011. 

[486] W. Simpson, “The point-to-point protocol (PPP),” IETF RFC 1661, July 
1994. 

[487] “IEEE standard for local and metropolitan area networks–Media access 
control (MAC) security,” IEEE Std 802.1AE-2018, Dec. 2018. 

[488] G. Meyer, “The PPP encryption control protocol (ECP),” IETF RFC 1968, 
June 1996. 

[489] S. Kent and K. Seo, “Security architecture for the Internet protocol,” IETF 
RFC 4301, Dec. 2005. 

[490] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen, “Internet key 
exchange protocol version 2 (IKEv2),” IETF RFC 7296, Oct. 2014. 

[491] S. Marksteiner and O. Maurhart, “A protocol for synchronizing 
quantum-derived keys in IPsec and its implementation,” in Proc. 9th Int. 

Conf. Quantum, Nano/Bio, and Micro Technologies, Venice, Italy, Aug. 
2015, pp. 35–40. 

[492] E. Rescorla, “The transport layer security (TLS) protocol version 1.3,” 
IETF RFC 8446, Aug. 2018. 

[493] A. Freier, P. Karlton, and P. Kocher, “The secure sockets layer (SSL) 
protocol version 3.0,” IETF RFC 6101, Aug. 2011. 

[494] A. Poppe, A. Fedrizzi, R. Ursin, H. R. Böhm, T. Lorünser, O. Maurhardt, 
M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. 
Zeilinger, “Practical quantum key distribution with polarization entangled 
photons,” Opt. Express, vol. 12, no. 16, pp. 3865–3871, Aug. 2004. 

[495] S. Ghernaouti-Hélie and M. A. Sfaxi, “Guaranteeing security of financial 
transaction by using quantum cryptography in banking environment,” in 
Proc. Int. Conf. E-Business Telecommun. Netw., Reading, UK, Oct. 2005, 
pp. 268–274. 

[496] A. Sharma and S. K. Lenka, “Authentication in online banking systems 
through quantum cryptography,” Int. J. Eng. Technol., vol. 5, no. 3, pp. 
2696–2700, June/July 2013. 

[497] Securing Data Transfer for Elections: Ethernet Encryption with Quantum 
Key Distribution [Online]. Available: https://marketing.idquantique.com 
/acton/attachment/11868/f-020f/1/-/-/-/-/Geneva%20Govt_%20DCI%20
QKD%20Use%20Case.pdf. 

[498] D. S. Sundar and N. Narayan, “A novel voting scheme using quantum 
cryptography,” in Proc. IEEE Conf. Open Systems, Subang, Malaysia, 
Oct. 2014, pp. 66–71. 

[499] M. Niemiec and P. Machnik, “Authentication in virtual private networks 
based on quantum key distribution methods,” Multimedia Tools Appl., vol. 

75, no. 17, pp. 10691–10707, Sept. 2016. 
[500] A. Aguado, V. López, J. Martinez-Mateo, M. Peev, D. López, and V. 

Martín, “VPN service provisioning via virtual router deployment and 
quantum key distribution,” in Proc. Opt. Fiber Commun. Conf., San 
Diego, California, USA, Mar. 2018, Art. no. Th2A.32. 

[501] Senetas Technology in Netherlands’ First Commercial Quantum 
Cryptography Project [Online]. Available: http://www.prweb.com/releas 
es/2010/10/prweb4670214.htm. 

[502] KPN to Implement Quantum Encrypted Connection (QKD) [Online]. 
Available: https://www.overons.kpn/nieuws/en/kpn-to-implement-quant 
um-encrypted-connection-qkd. 

[503] L. Huang, H. Zhou, K. Feng, and C. Xie, “Quantum random number cloud 
platform,” npj Quantum Inf., vol. 7, July 2021, Art. no. 107. 

[504] L. Zhou, Q. Wang, X. Sun, P. Kulicki, and A. Castiglione, “Quantum 
technique for access control in cloud computing II: Encryption and key 
distribution,” J. Network Comput. Appl., vol. 103, pp. 178–184, Feb. 
2018. 

[505] G. Sharma and S. Kalra, “Identity based secure authentication scheme 
based on quantum key distribution for cloud computing,” Peer-to-Peer 

Netw. Appl., vol. 11, no. 2, pp. 220–234, Mar. 2018. 
[506] J. Han, Y. Liu, X. Sun, and L. Song, “Enhancing data and privacy security 

in mobile cloud computing through quantum cryptography,” in Proc. 7th 

IEEE Int. Conf. Software Engineering and Service Science, Beijing, 
China, Aug. 2016, pp. 398–401. 

[507] B. Kelley, J. J. Prevost, P. Rad, and A. Fatima, “Securing cloud containers 
using quantum networking channels,” in Proc. IEEE Int. Conf. Smart 

Cloud, New York, NY, USA, Nov. 2016, pp. 103–111. 
[508] G. Murali and R. S. Prasad, “CloudQKDP: Quantum key distribution 

protocol for cloud computing,” in Proc. Int. Conf. Inf. Commun. 

Embedded Systems, Chennai, India, Feb. 2016. 
[509] Q.-C. Le and P. Bellot, “Enhancement of AGT telecommunication 

security using quantum cryptography,” in Proc. Int. Conf. Research, 

Innovation and Vision for the Future, Ho Chi Minh City, Vietnam, Feb. 
2006, pp. 7–16. 

[510] L. Wang, D. Wang, J. Gao, C. Huo, H. Bai, and J. Yuan, “Research on 
multi-source data security protection of smart grid based on quantum key 
combination,” in Proc. IEEE 4th Int. Conf. Cloud Computing and Big 

Data Analysis, Chengdu, China, Apr. 2019, pp. 449–453. 
[511] M. Sasaki, “Quantum key distribution and its applications,” IEEE Secur. 

Priv., vol. 16, no. 5, pp. 42–48, Sept./Oct. 2018. 
[512] M. Thangapandiyan, P. M. R. Anand, and K. S. Sankaran, “Quantum key 

distribution and cryptography mechanisms for cloud data security,” in 
Proc. Int. Conf. Commun. Signal Process., Chennai, India, Apr. 2018, pp. 
1031–1035. 

[513] World-first Demonstration of Real-time Transmission of Whole-genome 
Sequence Data Using Quantum Cryptography [Online]. Available: 
https://www.global.toshiba/ww/technology/corporate/rdc/rd/topics/20/20
01-01.html. 

[514] J. M. P. Armengol, B. Furch, C. J. de Matos, O. Minster, L. Cacciapuoti, 
M. Pfennigbauer, M. Aspelmeyer, T. Jennewein, R. Ursin, T. 
Schmitt-Manderbach, G. Baister, J. Rarity, W. Leeb, C. Barbieri, H. 
Weinfurter, and A. Zeilinger, “Quantum communications at ESA: 
Towards a space experiment on the ISS,” Acta Astronautica, vol. 63, no. 
1–4, pp. 165–178, July/Aug. 2008. 

[515] A. Tajima, T. Kondoh, T. Ochi, M. Fujiwara, K. Yoshino, H. Iizuka, T. 
Sakamoto, A. Tomita, S. Asami, and M. Sasaki, “Quantum key 
distribution network and its applications,” in Proc. IEEE Photon. Soc. 

Summer Top. Meeting Ser., Waikoloa Village, HI, USA, July 2018, pp. 
69–70. 

[516] T. M. T. Nguyen, M. A. Sfaxi, and S. Ghernaouti-Helie, “Integration of 
quantum cryptography in 802.11 networks,” in Proc. 1st Int. Conf. 

Availability, Reliability and Security, Vienna, Austria, Apr. 2006. 
[517] S. Suchat, W. Khunnam, and P. P. Yupapin, “Quantum key distribution 

via an optical wireless communication link for telephone networks,” Opt. 

Eng., vol. 46, no. 10, Oct. 2007, Art. no. 100502. 
[518] QuantumCTek Security Mobile Phone [Online]. Available: http://www.q 

uantum-info.com/English/product/ptwo/yidongjiamiyingyongchanpin/20
18/0118/477.html. 

[519] China Telecom Launches Quantum Encrypted Phone Calls on 
Smartphones in a New Pilot Programme [Online]. Available: 
https://www.thestar.com.my/tech/tech-news/2021/01/07/china-telecom-l
aunches-quantum-encrypted-phone-calls-on-smartphones-in-a-new-pilot
-programme. 



 
 

57 

[520] R. Wang, R. S. Tessinari, E. Hugues-Salas, A. Bravalheri, N. Uniyal, A. S. 
Muqaddas, R. S. Guimaraes, T. Diallo, S. Moazzeni, Q. Wang, G. T. 
Kanellos, R. Nejabati, and D. Simeonidou, “End-to-end quantum secured 
inter-domain 5G service orchestration over dynamically switched 
flex-grid optical networks enabled by a q-ROADM,” J. Lightwave 

Technol., vol. 38, no. 1, pp. 139–149, Jan. 2020. 
[521] P. Wright, C. White, R. C. Parker, J.-S. Pegon, M. Menchetti, J. Pearse, A. 

Bahrami, A. Moroz, A. Wonfor, R. V. Penty, T. P. Spiller, and A. Lord, 
“5G network slicing with QKD and quantum-safe security,” J. Opt. 

Commun. Netw., vol. 13, no. 3, pp. 33–40, Mar. 2021. 
[522] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network 

information flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, 
July 2000. 

[523] F.-H. Xu, H. Wen, Z.-F. Han, and G.-C. Guo, “Network coding in trusted 
relay based quantum network,” [Online]. Available: http://individual.utor 
onto.ca/Tiger_Xu/Research_files/NCodingQKD.pdf. 

[524] H. V. Nguyen, P. V. Trinh, A. T. Pham, Z. Babar, D. Alanis, P. Botsinis, D. 
Chandra, S. X. Ng, and L. Hanzo, “Network coding aided cooperative 
quantum key distribution over free-space optical channels,” IEEE Access, 
vol. 5, pp. 12301–12317, July 2017. 

[525] M. Hayashi, K. Iwama, H. Nishimura, R. Raymond, and S. Yamashita, 
“Quantum network coding,” in Proc. Annu. Symp. Theoretical Aspects 

Comput. Sci., Lecture Notes in Computer Science, vol. 4393, pp. 610–621, 
2007. 

[526] J. Li, X.-B. Chen, G. Xu, Y.-X. Yang, and Z.-P. Li, “Perfect quantum 
network coding independent of classical network solutions,” IEEE 

Commun. Lett., vol. 19, no. 3, pp. 115–118, Feb. 2015. 
[527] T. Shang, J. Li, and J. Liu, “Secure quantum network coding for 

controlled repeater networks,” Quantum Inf. Process., vol. 15, no. 7, pp. 
2937–2953, Apr. 2016. 

[528] T. Satoh, K. Ishizaki, S. Nagayama, and R. V. Meter, “Analysis of 
quantum network coding for realistic repeater networks,” Phys. Rev. A, 
vol. 93, no. 3, Mar. 2016, Art. no. 032302. 

[529] T. Shang, X. Zhao, and J. Liu, “Quantum network coding based on 
controlled teleportation,” IEEE Commun. Lett., vol. 18, no. 5, pp. 
865–868, May 2014. 

[530] H. V. Nguyen, Z. Babar, D. Alanis, P. Botsinis, D. Chandra, M. A. M. 
Izhar, S. X. Ng, and L. Hanzo, “Towards the quantum internet: 
Generalised quantum network coding for large-scale quantum 
communication networks,” IEEE Access, vol. 5, pp. 17288–17308, Aug. 
2017. 

[531] Q. Li, Y. Wang, H. Mao, J. Yao, and Q. Han, “Mathematical model and 
topology evaluation of quantum key distribution network,” Opt. Express, 
vol. 28, no. 7, pp. 9419–9434, Mar. 2020. 

[532] Y. Wang, Q. Li, H. Mao, Q. Han, F. Huang, and H. Xu, “Topological 
optimization of hybrid quantum key distribution networks,” Opt. Express, 
vol. 28, no. 18, pp. 26348–26358, Aug. 2020. 

[533] G. L. Roberts, M. Lucamarini, Z. L. Yuan, J. F. Dynes, L. C. Comandar, A. 
W. Sharpe, A. J. Shields, M. Curty, I. V. Puthoor, and E. Andersson, 
“Experimental measurement-device-independent quantum digital 
signatures,” Nature Commun., vol. 8, Oct. 2017, Art. no. 1098. 

[534] L. Oesterling, D. Hayford, and G. Friend, “Comparison of commercial 
and next generation quantum key distribution: Technologies for secure 
communication of information,” in Proc. IEEE Conf. Technologies for 

Homeland Security, Waltham, MA, USA, Nov. 2012. 
[535] H. Chun, I. Choi, G. Faulkner, L. Clarke, B. Barber, G. George, C. Capon, 

A. Niskanen, J. Wabnig, D. O’Brien, and D. Bitauld, “Handheld free 
space quantum key distribution with dynamic motion compensation,” Opt. 

Express, vol. 25, no. 6, pp. 6784–6795, Mar. 2017. 
[536] Y.-H. Yang, P.-Y. Li, S.-Z. Ma, X.-C. Qian, K.-Y. Zhang, L.-J. Wang, 

W.-L. Zhang, F. Zhou, S.-B. Tang, J.-Y. Wang, Y. Yu, Q. Zhang, and 
J.-W. Pan, “All optical metropolitan quantum key distribution network 
with post-quantum cryptography authentication,” Opt. Express, vol. 29, 
no. 16, pp. 25859–25867, Aug. 2021. 

[537] A. Extance, “The future of cryptocurrencies: Bitcoin and beyond,” Nature, 
vol. 526, no. 7571, pp. 21–23, Oct. 2015. 

[538] A. K. Fedorov, E. O. Kiktenko, and A. I. Lvovsky, “Quantum computers 
put blockchain security at risk,” Nature, vol. 563, no. 7732, pp. 465–467, 
Nov. 2018. 

[539] Y.-L. Gao, X.-B. Chen, Y.-L. Chen, Y. Sun, X.-X. Niu, and Y.-X. Yang, 
“A secure cryptocurrency scheme based on post-quantum blockchain,” 
IEEE Access, vol. 6, pp. 27205–27213, June 2018. 

[540] C.-Y. Li, X.-B. Chen, Y.-L. Chen, Y.-Y. Hou, and J. Li, “A new 

lattice-based signature scheme in post-quantum blockchain network,” 
IEEE Access, vol. 7, pp. 2026–2033, Jan. 2019. 

[541] T. M. Fernández-Caramès and P. Fraga-Lamas, “Towards post-quantum 
blockchain: A review on blockchain cryptography resistant to quantum 
computing attacks,” IEEE Access, vol. 8, pp. 21091–21116, Feb. 2020. 

[542] E. O. Kiktenko, N. O. Pozhar, M. N. Anufriev, A. S. Trushechkin, R. R. 
Yunusov, Y. V. Kurochkin, A. I. Lvovsky, and A. K. Fedorov, 
“Quantum-secured blockchain,” Quantum Sci. Technol., vol. 3, no. 3, 
May 2018, Art. no. 035004. 

[543] X. Sun, M. Sopek, Q. Wang, and P. Kulicki, “Towards quantum-secured 
permissioned blockchain: Signature, consensus, and logic,” Entropy, vol. 
21, no. 9, Sept. 2019, Art. no. 887. 

[544] T. M. Fernández-Caramés, “From pre-quantum to post-quantum IoT 
security: A survey on quantum-resistant cryptosystems for the Internet of 
Things,” IEEE Internet Things J., vol. 7, no. 7, pp. 6457–6480, July 2020. 

[545] R. Chaudhary, G. S. Aujla, N. Kumar, and S. Zeadally, “Lattice-based 
public key cryptosystem for Internet of Things environment: Challenges 
and solutions,” IEEE Internet Things J., vol. 6, no. 3, pp. 4897–4909, June 
2019. 

[546] S. Ebrahimi, S. Bayat-Sarmadi, and H. Mosanaei-Boorani, “Post-quantum 
cryptoprocessors optimized for edge and resource-constrained devices in 
IoT,” IEEE Internet Things J., vol. 6, no. 3, pp. 5500–5507, June 2019. 

[547] C. Cheng, R. Lu, A. Petzoldt, and T. Takagi, “Securing the Internet of 
Things in a quantum world,” IEEE Commun. Mag., vol. 55, no. 2, pp. 
116–120, Feb. 2017. 

[548] Z. Liu, K. R. Choo, and J. Grossschadl, “Securing edge devices in the 
post-quantum Internet of Things using lattice-based cryptography,” IEEE 

Commun. Mag., vol. 56, no. 2, pp. 158–162, Feb. 2018. 
[549] J. Lee, D. Kim, H. Lee, Y. Lee, and J. H. Cheon, “RLizard: Post-quantum 

key encapsulation mechanism for IoT devices,” IEEE Access, vol. 7, pp. 
2080–2091, Jan. 2019. 

[550] A. Khalid, S. McCarthy, M. O’Neill, and W. Liu, “Lattice-based 
cryptography for IoT in a quantum world: Are we ready?,” in Proc. IEEE 

8th Int. Workshop on Advances in Sensors and Interfaces, Otranto, Italy, 
June 2019, pp. 194–199. 

[551] U. Banerjee, A. Pathak, and A. P. Chandrakasan, “An energy-efficient 
configurable lattice cryptography processor for the quantum-secure 
Internet of Things,” in Proc. IEEE Int. Solid-State Circuits Conf., San 
Francisco, CA, USA, Feb. 2019, pp. 46–48. 

[552] S. K. Routray, M. K. Jha, L. Sharma, R. Nyamangoudar, A. Javali, and S. 
Sarkar, “Quantum cryptography for IoT: A perspective,” in Proc. Int. 

Conf. IoT Appl., Nagapattinam, India, May 2017. 
[553] A. Mavromatis, F. Ntavou, E. H. Salas, G. T. Kanellos, R. Nejabati, and D. 

Simeonidou, “Experimental demonstration of quantum key distribution 
(QKD) for energy-efficient software-defined Internet of Things,” in Proc. 

Eur. Conf. Opt. Commun., Rome, Italy, Sept. 2018. 
[554] G. T. Kanellos, F. Ntavou, A. Mavromatis, R. Wang, E. H. Salas, S. Yan, 

R. Nejabati, and D. Simeonidou, “Quantum key distribution: Scenarios 
for application and co-existence in optical metro and IoT networks,” in 
Proc. Int. Photon. Optoelectron. Meeting, Wuhan, China, Nov. 2018, Art. 
no. OF2A.2. 

[555] M. S. Rahman and M. Hossam-E-Haider, “Quantum IoT: A quantum 
approach in IoT security maintenance,” in Proc. Int. Conf. Robotics, 

Electrical and Signal Processing Techniques, Dhaka, Bangladesh, Jan. 
2019, pp. 269–272. 

[556] L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, 
“Wireless myths, realities, and futures: From 3G/4G to optical and 
quantum wireless,” Proc. IEEE, vol. 100, pp. 1853–1888, May 2012. 

[557] B. Sujatha, S. V. Raju, and G. S. Rao, “Proficient capability of QKD in 
Wi-Fi network system implementation,” in Proc. Int. Conf. Commun. 

Electron. Systems, Coimbatore, India, Oct. 2016. 
[558] A. Aguado, D. R. Lopez, V. Lopez, F. de la Iglesia, A. Pastor, M. Peev, W. 

Amaya, F. Martin, C. Abellan, and V. Martin, “Quantum technologies in 
support for 5G services: Ordered proof-of-transit,” in Proc. Eur. Conf. 

Opt. Commun., Dublin, Ireland, Sept. 2019. 
[559] V. Lopez, A. Pastor, D. Lopez, A. Aguado, and V. Martin, “Applying 

QKD to improve next-generation network infrastructures,” in Proc. Eur. 

Conf. Netw. Commun., Valencia, Spain, June 2019, pp. 283–288. 
[560] C. Q. Choi, “World’s first “quantum drone” for impenetrable 

air-to-ground data links takes off,” IEEE Spectr., June 2019.  
[561] H.-Y. Liu, X.-H. Tian, C. Gu, P. Fan, X. Ni, R. Yang, J.-N. Zhang, M. Hu, 

J. Guo, X. Cao, X. Hu, G. Zhao, Y.-Q. Lu, Y.-X. Gong, Z. Xie, and S.-N. 
Zhu, “Drone-based entanglement distribution towards mobile quantum 



 
 

58 

networks,” Natl. Sci. Rev., vol. 7, no. 5, pp. 921–928, May 2020. 
[562] H.-Y. Liu, X.-H. Tian, C. Gu, P. Fan, X. Ni, R. Yang, J.-N. Zhang, M. Hu, 

J. Guo, X. Cao, X. Hu, G. Zhao, Y.-Q. Lu, Y.-X. Gong, Z. Xie, and S.-N. 
Zhu, “Optical-relayed entanglement distribution using drones as mobile 
nodes,” Phys. Rev. Lett., vol. 126, no. 2, Jan. 2021, Art. no. 020503. 

[563] O. Elmabrok and M. Razavi, “Wireless quantum key distribution in 
indoor environments,” J. Opt. Soc. Am. B, vol. 35, no. 2, pp. 197–207, Feb. 
2018. 

[564] C. Ottaviani, M. J. Woolley, M. Erementchouk, J. F. Federici, P. 
Mazumder, S. Pirandola, and C. Weedbrook, “Terahertz quantum 
cryptography,” IEEE J. Sel. Areas Commun., vol. 38, no. 3, pp. 483–495, 
Mar. 2020. 

[565] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum 
entanglement,” Rev. Mod. Phys., vol. 81, no. 2, pp. 865–942, June 2009. 

[566] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. 
Wootters, “Teleporting an unknown quantum state via dual classical and 
Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett., vol. 70, no. 13, pp. 
1895–1899, Mar. 1993. 

[567] T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. 
Tadanaga, M. Asobe, B. Baek, R. Hadfield, S. Miki, M. Fujiwara, M. 
Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, “Long-distance 
entanglement-based quantum key distribution over optical fiber,” Opt. 

Express, vol. 16, no. 23, pp. 19118–19126, Dec. 2008. 
[568] R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, 

M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. 
Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. 
Weinfurter, and A. Zeilinger, “Entanglement-based quantum 
communication over 144 km,” Nature Phys., vol. 3, no. 7, pp. 481–486, 
July 2007. 

[569] A. Ciurana, V. Martin, J. Martinez-Mateo, B. Schrenk, M. Peev, and A. 
Poppe, “Entanglement distribution in optical networks,” IEEE J. Sel. Top. 

Quantum Electron., vol. 21, no. 3, May/June 2015, Art. no. 6400212. 
[570] S. Wengerowsky, S. K. Joshi, F. Steinlechner, J. R. Zichi, S. M. 

Dobrovolskiy, R. van der Molen, J. W. N. Los, V. Zwiller, M. A. M. 
Versteegh, A. Mura, D. Calonico, M. Inguscio, H. Hübel, L. Bo, T. 
Scheidl, A. Zeilinger, A. Xuereb, and R. Ursin, “Entanglement 
distribution over a 96-km-long submarine optical fiber,” PNAS, vol. 116, 
no. 14, pp. 6684–6688, Apr. 2019. 

[571] M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. 
Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: 
Concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum 

Electron., vol. 21, no. 3, May/June 2015, Art. no. 6400313. 
[572] S. Wengerowsky, S. K. Joshi, F. Steinlechner, H. Hübel, and R. Ursin, 

“An entanglement-based wavelength-multiplexed quantum 
communication network,” Nature, vol. 564, no. 7735, pp. 225–228, Dec. 
2018. 

[573] A. Pirker and W. Dür, “A quantum network stack and protocols for 
reliable entanglement-based networks,” New J. Phys., vol. 21, no. 3, Mar. 
2019, Art. no. 033003. 

[574] J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state 
transfer and entanglement distribution among distant nodes in a quantum 
network,” Phys. Rev. Lett., vol. 78, no. 16, pp. 3221–3224, Apr. 1997. 

[575] X.-X. Xia, Q.-C. Sun, Q. Zhang, and J.-W. Pan, “Long distance quantum 
teleportation,” Quantum Sci. Technol., vol. 3, no. 1, Dec. 2017, Art. no. 
014012. 

[576] R. Valivarthi, M. G. Puigibert, Q. Zhou, G. H. Aguilar, V. B. Verma, F. 
Marsili, M. D. Shaw, S. W. Nam, D. Oblak, and W. Tittel, “Quantum 
teleportation across a metropolitan fibre network,” Nature Photon., vol. 
10, no. 10, pp. 676–680, Oct. 2016. 

[577] Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, 
W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. 
You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum 
teleportation with independent sources and prior entanglement 
distribution over a network,” Nature Photon., vol. 10, no. 10, pp. 671–675, 
Oct. 2016. 

[578] J.-G. Ren, P. Xu, H.-L. Yong, L. Zhang, S.-K. Liao, J. Yin, W.-Y. Liu, 
W.-Q. Cai, M. Yang, L. Li, K.-X. Yang, X. Han, Y.-Q. Yao, J. Li, H.-Y. 
Wu, S. Wan, L. Liu, D.-Q. Liu, Y.-W. Kuang, Z.-P. He, P. Shang, C. Guo, 
R.-H. Zheng, K. Tian, Z.-C. Zhu, N.-L. Liu, C.-Y. Lu, R. Shu, Y.-A. Chen, 
C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Ground-to-satellite quantum 
teleportation,” Nature, vol. 549, no. 7670, pp. 70–73, Aug. 2017. 

[579] R. V. Meter, “Quantum networking and internetworking,” IEEE Network, 
vol. 26, no. 4, pp. 59–64, July/Aug. 2012. 

[580] G. L. Long and X. S. Liu, “Theoretically efficient high-capacity 
quantum-key-distribution scheme,” Phys. Rev. A, vol. 65, no. 3, Mar. 
2002, Art. no. 032302. 

[581] G.-L. Long, “Quantum secure direct communication: Principles, current 
status, perspectives,” in Proc. IEEE 85th Vehicular Technol. Conf., 
Sydney, NSW, Australia, June 2017. 

[582] Z.-J. Zhang, “Multiparty quantum secret sharing of secure direct 
communication,” Phys. Lett. A, vol. 342, no. 1–2, pp. 60–66, July 2005. 

[583] H. Lai, J. Xiao, M. A. Orgun, L. Xue, and J. Pieprzyk, “Quantum direct 
secret sharing with efficient eavesdropping-check and authentication 
based on distributed fountain codes,” Quantum Inf. Process., vol. 13, no. 
4, pp. 895–907, Apr. 2014. 

[584] C. S. Yoon, M. S. Kang, J. I. Lim, and H. J. Yang, “Quantum signature 
scheme based on a quantum search algorithm,” Phys. Scr., vol. 90, no. 1, 
Dec. 2014, Art. no. 015103. 

[585] G. Gao, “Two quantum dialogue protocols without information leakage,” 
Opt. Commun., vol. 283, no. 10, pp. 2288–2293, May 2010. 

[586] C. Zheng and G. Long, “Quantum secure direct dialogue using 
Einstein-Podolsky-Rosen pairs,” Sci. China Phys. Mech. Astron., vol. 57, 
no. 7, pp. 1238–1243, July 2014. 

[587] F.-G. Deng, G. L. Long, and X.-S. Liu, “Two-step quantum direct 
communication protocol using the Einstein-Podolsky-Rosen pair block,” 
Phys. Rev. A, vol. 68, no. 4, Oct. 2003, Art. no. 042317. 

[588] F.-G. Deng and G. L. Long, “Secure direct communication with a 
quantum one-time pad,” Phys. Rev. A, vol. 69, no. 5, May 2004, Art. no. 
052319. 

[589] D. Pan, K. Li, D. Ruan, S. X. Ng, and L. Hanzo, “Single-photon-memory 
two-step quantum secure direct communication relying on 
Einstein-Podolsky-Rosen pairs,” IEEE Access, vol. 8, pp. 
121146–121161, July 2020. 

[590] Z. Sun, L. Song, Q. Huang, L. Yin, G. Long, J. Lu, and L. Hanzo, 
“Toward practical quantum secure direct communication: A 
quantum-memory-free protocol and code design,” IEEE Trans. Commun., 
vol. 68, no. 9, pp. 5778–5792, Sept. 2020. 

[591] R. Qi, Z. Sun, Z. Lin, P. Niu, W. Hao, L. Song, Q. Huang, J. Gao, L. Yin, 
and G.-L. Long, “Implementation and security analysis of practical 
quantum secure direct communication,” Light: Sci. Appl., vol. 8, Feb. 
2019, Art. no. 22. 

[592] Z. Qi, Y. Li, Y. Huang, J. Feng, Y. Zheng, and X. Chen, “A 15-user 
quantum secure direct communication network,” Light: Sci. Appl., vol. 10, 
Sept. 2021, Art. no. 183. 

[593] C.-Y. Chen, G.-J. Zeng, F.-J. Lin, Y.-H. Chou, and H.-C. Chao, “Quantum 
cryptography and its applications over the Internet,” IEEE Network, vol. 
29, no. 5, pp. 64–69, Sept./Oct. 2015. 

[594] M. Geihs, O. Nikiforov, D. Demirel, A. Sauer, D. Butin, F. Günther, G. 
Alber, T. Walther, and J. Buchmann, “The status of 
quantum-key-distribution-based long-term secure Internet 
communication,” IEEE Trans. Sustainable Comput., vol. 6, no. 1, pp. 
19–29, Jan.-Mar. 2021. 

[595] K. Azuma, A. Mizutani, and H.-K. Lo, “Fundamental rate-loss trade-off 
for the quantum internet,” Nature Commun., vol. 7, Nov. 2016, Art. no. 
13523. 

[596] K. Azuma and G. Kato, “Aggregating quantum repeaters for the quantum 
internet,” Phys. Rev. A, vol. 96, no. 3, Sept. 2017, Art. no. 032332. 

[597] A. S. Cacciapuoti, M. Caleffi, F. Tafuri, F. S. Cataliotti, S. Gherardini, and 
G. Bianchi, “Quantum internet: Networking challenges in distributed 
quantum computing,” IEEE Network, vol. 34, no. 1, pp. 137–143, 
Jan./Feb. 2020. 

[598] M. Caleffi and A. S. Cacciapuoti, “Quantum switch for the quantum 
internet: Noiseless communications through noisy channels,” IEEE J. Sel. 

Areas Commun., vol. 38, no. 3, pp. 575–588, Mar. 2020. 
[599] Z. Li, K. Xue, J. Li, N. Yu, J. Liu, D. S. L. Wei, Q. Sun, and J. Lu, 

“Building a large-scale and wide-area quantum internet based on an 
OSI-alike model,” China Commun., vol. 18, no. 10, pp. 1–14, Oct. 2021. 

[600] D. Chandra, A. S. Cacciapuoti, M. Caleffi, and L. Hanzo, “Direct 
quantum communications in the presence of realistic noisy 
entanglement,” IEEE Trans. Commun., Early Access, Oct. 2021, DOI: 
10.1109/TCOMM.2021.3122786. 

[601] H. Wang, Y. Zhao, Y. Li, X. Yu, J. Zhang, C. Liu, and Q. Shao, “A 
flexible key-updating method for software-defined optical networks 
secured by quantum key distribution,” Opt. Fiber Technol., vol. 45, pp. 
195–200, Nov. 2018. 

[602] X. Yu, X. Liu, Y. Liu, A. Nag, X. Zou, Y. Zhao, and J. Zhang, 



 
 

59 

“Multi-path-based quasi-real-time key provisioning in 
quantum-key-distribution enabled optical networks (QKD-ON),” Opt. 

Express, vol. 29, no. 14, pp. 21225–21239, July 2021. 
[603] H. Wang, Y. Zhao, A. Nag, X. Yu, X. He, and J. Zhang, “End-to-end 

quantum key distribution (QKD) from metro to access networks,” in Proc. 

Int. Conf. Design of Reliable Communication Networks, Milan, Itlay, Mar. 
2020. 

[604] X. Zhang, Z. Babar, P. Petropoulos, H. Haas, and L. Hanzo, “The 
evolution of optical OFDM,” IEEE Commun. Surveys Tuts., vol. 23, no. 3, 
pp. 1430–1457, 3rd Quart., 2021. 

[605] L. Hanzo, T. H. Liew, B. L. Yeap, R. Y. S. Tee, and S. X. Ng, Turbo 

Coding, Turbo Equalisation and Space-Time Coding. John Wiley & Sons 
Ltd, 2nd edition, 2011.  

 
 

Yuan Cao received the B.Eng. degree in 
optoelectronic information engineering from the 
Nanjing University of Posts and Telecommunications, 
China, in 2016, and the Ph.D. degree in information 
and communication engineering from the Beijing 
University of Posts and Telecommunications, China, 
in 2021. From June 2018 to August 2018, he was an 
Academic Visitor with the KTH Royal Institute of 
Technology, Sweden. From June 2019 to August 
2019, he was an Academic Visitor with the 
University of Southampton, U.K. He is currently a 

Lecturer with the Nanjing University of Posts and Telecommunications. His 
research interests include quantum communications, quantum key distribution 
networking, software defined networking, and optical network security. 

 
 

Yongli Zhao [SM’15] received the Ph.D. degree 
from the Beijing University of Posts and 
Telecommunications in 2010. From January 2016 to 
January 2017, he was a Visiting Associate Professor 
with the University of California, Davis. He is 
currently a Professor with the Beijing University of 
Posts and Telecommunications. He has published 
more than 400 international journal and conference 
papers. His research interests include software 
defined optical networks, elastic optical networks, 
datacenter networking, machine learning in optical 

networks, optical network security, and quantum key distribution networking. 
He is a Fellow of the IET. 
 
 

Qin Wang received the Ph.D. degree from the 
University of Science and Technology of China in 
2006. From October 2006 to July 2012, she was a 
Post-Doctoral Researcher with the KTH Royal 
Institute of Technology, Technical University of 
Denmark, and University of Copenhagen. She is 
currently a Professor and the Deputy Dean of the 
School of Communication and Information 
Engineering, Nanjing University of Posts and 
Telecommunications. Her research interests include 

quantum cryptography and quantum optics. 
 

 

Jie Zhang received the Ph.D. degree in 
electromagnetic field and microwave technology 
from the Beijing University of Posts and 
Telecommunications in 1998. He is currently a 
Professor and the Dean of the School of Electronic 
Engineering, Beijing University of Posts and 
Telecommunications. He has published more than 
400 technical articles, authored eight books, and 
submitted 17 ITU-T recommendation contributions 
and six IETF drafts. His research interests include 
architecture, protocols, security, and standards for 

optical transport networks.  
 

 

Soon Xin Ng (Michael) [S’99–M’03–SM’08] 
received the B.Eng. degree (First class) in electronic 
engineering and the Ph.D. degree in 
telecommunications from the University of 
Southampton, U.K., in 1999 and 2002, respectively. 
From 2003 to 2006, he was a postdoctoral research 
fellow working on collaborative European research 
projects. Since August 2006, he has been a member 
of academic staff in the School of Electronics and 
Computer Science, University of Southampton. He 
was the principal investigator of an EPSRC project 

on “Cooperative Classical and Quantum Communications Systems”. He is 
currently a Professor of Next Generation Communications at the University of 
Southampton. His research interests include adaptive coded modulation, coded 
modulation, channel coding, space-time coding, joint source and channel 
coding, iterative detection, OFDM, MIMO, cooperative communications, 
distributed coding, quantum communications, quantum error correction codes, 
joint wireless-and-optical-fibre communications, game theory, artificial 
intelligence and machine learning. He has published over 260 papers and 
co-authored two John Wiley/IEEE Press books in this field. 

He is a Senior Member of the IEEE, a Fellow of the Higher Education 
Academy in the UK, a Chartered Engineer and a Fellow of the IET. He acted as 
TPC/track/workshop chairs for various conferences. He serves as an editor of 
Quantum Engineering. He was a guest editor for the special issues in IEEE 
Journal on Selected Areas in Communications as well as editors in the IEEE 
Access and the KSII Transactions on Internet and Information Systems. He is 
one of the Founders and Officers of the IEEE Quantum Communications & 
Information Technology Emerging Technical Subcommittee (QCIT-ETC).  
 

 

 

Lajos Hanzo (http://www-mobile.ecs.soton.ac.uk, 
https://en.wikipedia.org/wiki/Lajos_Hanzo) 
[FIEEE’04] received his Master degree and 
Doctorate in 1976 and 1983, respectively from the 
Technical University (TU) of Budapest. He was also 
awarded the Doctor of Sciences (DSc) degree by the 
University of Southampton (2004) and Honorary 
Doctorates by the TU of Budapest (2009) and by the 
University of Edinburgh (2015). He is a Foreign 
Member of the Hungarian Academy of Sciences and 
a former Editor-in-Chief of the IEEE Press. He has 

served several terms as Governor of both IEEE ComSoc and of VTS. He has 
published 2000+ contributions at IEEE Xplore, 19 Wiley-IEEE Press books and 
has helped the fast-track career of 123 PhD students. Over 40 of them are 
Professors at various stages of their careers in academia and many of them are 
leading scientists in the wireless industry. He is also a Fellow of the Royal 
Academy of Engineering (FREng), of the IET and of EURASIP. He is the 
recipient of the 2022 Eric Sumner Field Award. 
 



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 2, SECOND QUARTER 2019 1209

Quantum Search Algorithms for Wireless

Communications
Panagiotis Botsinis, Member, IEEE, Dimitrios Alanis , Student Member, IEEE, Zunaira Babar,

Hung Viet Nguyen , Member, IEEE, Daryus Chandra , Student Member, IEEE,

Soon Xin Ng , Senior Member, IEEE, and Lajos Hanzo , Fellow, IEEE

Abstract—Faster, ultra-reliable, low-power, and secure
communications has always been high on the wireless evolu-
tionary agenda. However, the appetite for faster, more reliable,
greener, and more secure communications continues to grow. The
state-of-the-art methods conceived for achieving the performance
targets of the associated processes may be accompanied by an
increase in computational complexity. Alternatively, a degraded
performance may have to be accepted due to the lack of jointly
optimized system components. In this survey we investigate
the employment of quantum computing for solving problems
in wireless communication systems. By exploiting the inherent
parallelism of quantum computing, quantum algorithms may be
invoked for approaching the optimal performance of classical
wireless processes, despite their reduced number of cost-function
evaluations. In this contribution we discuss the basics of
quantum computing using linear algebra, before presenting
the operation of the major quantum algorithms, which have
been proposed in the literature for improving wireless com-
munications systems. Furthermore, we investigate a number of
optimization problems encountered both in the physical and
network layer of wireless communications, while comparing
their classical and quantum-assisted solutions. Finally, we state
a number of open problems in wireless communications that
may benefit from quantum computing.

Index Terms—Algorithm design and analysis, channel estima-
tion, localization, multiuser detection, non-orthogonal multiple
access, optimization, precoding, quantum algorithms, quan-
tum computing, routing, visible light communication, wireless
communication.

LIST OF ABBREVIATIONS

ACO Ant Colony Optimization

AoA Angle of Arrival

BBHT Boyer-Brassard-Høyer-Tapp

BER Bit Error Rate

CDMA Code Division Multiple Access

CF Cost Function

CFE Cost Function Evaluation

Manuscript received February 10, 2018; revised August 15, 2018 and
October 10, 2018; accepted November 16, 2018. Date of publication
November 20, 2018; date of current version May 31, 2019. This work
was supported by the European Research Council under the Advanced
Fellow Grant the Royal Society’s Wolfson Research Merit Award and
the Engineering and Physical Sciences Research Council under Grant
EP/L018659/1. (Corresponding author: Lajos Hanzo.)

The authors are with the School of Electronics and Computer Science,
University of Southampton, Southampton, SO17 1BJ, U.K. (e-mail: pb1y14@
ecs.soton.ac.uk; da1d16@ecs.soton.ac.uk; zb2g10@ecs.soton.ac.uk;
hvn08r@ecs.soton.ac.uk; dc2n14@ecs.soton.ac.uk; sxn@ecs.soton.ac.uk;
lh@ecs.soton.ac.uk).

Digital Object Identifier 10.1109/COMST.2018.2882385

CIR Channel Impulse Response

CoMP Coordinated Multi-Point

DDCE Decision-Directed Channel Estimation

DEA Differential Evolution Algorithm

DH Dürr-Høyer

DN Destination Node

eMBB enhanced Mobile BroadBand

EQPO Evolutionary Quantum Pareto Optimization

FD-CHTF Frequency Domain - CHannel Transfer

Function

FFT Fast Fourier Transform

GA Genetic Algorithm

GNFS General Number Field Sieve

HetNet Heterogeneous Network

HHL Harrow-Hassidim-Lloyd

IoT Internet of Things

IQFT Inverse Quantum Fourier Transform

LED Light Emitting Diode

LLR Log-Likelihood Ratio

LOS Line Of Sight

LTE Long-Term Evolution

MAP Maximum A posteriori Probability

MBER Minimum Bit Error Ratio

ML Maximum Likelihood

MMSE Minimum Mean Square Error

mMTC massive Machine Type Communications

MODQO Multi-Objective Decomposition Quantum

Optimization

MPC Multi-Path Component

MUD Multi-User Detection

MUT Multi-User Transmitter

NDQIO Non-Dominated Quantum Iterative

Optimization

NDQO Non-Dominated Quantum Optmization

NOMA Non-Orthogonal Multiple Access

NU Network Utility

OFDMA Orthogonal Frequency Division Multiple

Access

OMA Orthogonal Multiple Access

PDP Power Delay Profile

PIC Parallel Interference Cancellation

PLR Packet Loss Ratio

PSO Particle Swarm Optimization

QCA Quantum Counting Algorithm

QGA Quantum Genetic Algorithm

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/



1210 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 2, SECOND QUARTER 2019

QHA Quantum Heuristic Algorithm

QMA Quantum Mean Algorithm

QoS Quality of Service

QPEA Quantum Phase Estimation Algorithm

QPSK Quadrature Phase Shift Keying

QRWBS Quantum Weighted Boosting Search

QSA Quantum Search Algorithm

QSVM Quantum Support Vector Machine

QWSA Quantum Weighted Sum Algorithm

RN Relay Node

RSSI Received Signal Strength Indicator

RWBS Repeated Weighted Boosting Search

SC-FDMA Single-Carrier Frequency Division Multiple

Access

SIC Successive Interference Cancellation

SISO Soft-Input Soft-Output

SN Source Node

SNR Signal to Noise Ratio

SVM Support Vector Machine

TDMA Time Division Multiple Access

TDoA Time Difference of Arrival

ToA Time of Arrival

TPC Transmit Pre-Coding

URLLC Ultra-Reliable Low-Latency Communications

UV Utility Vector

UWB Ultra WideBand

WSN Wireless Sensor Network

ZF Zero Forcing.

I. INTRODUCTION

T
HE NEXT generation of wireless communications

promises Ultra-Reliable Low-Latency

Communications (URLLC), massive Machine Type

Communications (mMTC), as well as 100x increased

throughput in enhanced Mobile BroadBand (eMBB) com-

munications [1], [2]. The plethora of applications, involving

the Internet of Things (IoT) and the vision of every-

thing being connected everywhere and anytime has to be

achieved [3], [4], while keeping the required resources as

low as possible. For example, the transition from Orthogonal

Multiple Access (OMA) to Non-Orthogonal Multiple

Access (NOMA) [5] is expected to occur in the eMBB use

case of 5G for increasing the system throughput. However, the

complexity of the signal detection will also be increased, even

if a sub-optimal detector based on for example Successive

Interference Cancellation (SIC) is adopted [6]. At the same

time, agile and accurate channel estimation will be required in

URLLC [7], where the target end-to-end delay requirement,

which includes both the transmission time as well as process-

ing time, is on the order of a few OFDM symbols. In order to

achieve this, a joint channel estimator and data detector may

be employed for achieving an improved performance, albeit

this tends to impose increased computational complexity. In

a mobile mMTC network, the inherent problem of finding

the optimal route amongst numerous nodes is again going to

require intensive computations [8].

During the last few years the research community has turned

its attention to quantum computing [1], [9]–[12] with the

objective of amalgamating it with classical communications in

order to attain certain performance targets, such as throughput,

round trip delay and reliability targets at a low computational

complexity. As we will discuss in more detail in this contri-

bution, there are numerous optimization problems in wireless

communications systems that may be solved at a reduced

number of Cost Function Evaluations (CFEs) by employing

quantum algorithms.

A. Why Quantum Computing?

The ever-reducing transistor size following Moore’s law is

approaching the point, where the so-called quantum effects [9]

become prevalent in the transistors’ operation [13]. This spe-

cific trend implies that quantum effects become unavoidable,

hence rendering the research of quantum computation systems

an urgent necessity. In fact, a quantum annealing chipset [14]

is already commercially available from D-Wave1 [15], [16].

Apart from the quantum annealing architecture, the so-called

gate-based architecture [10], which relies on building com-

putational blocks using quantum gates in a similar fashion

to classical logic gates, is attracting increasing attention due

to the recent advances in quantum stabilizer codes [17]–[22],

which are capable of mitigating the decoherence2 effects

encountered by quantum circuits [9]. In terms of implementa-

tion, D-Wave’s most recent model, namely D-Wave 2000Q,3

has a total of 2000 qubits, while IBM Q Experience,4 which

relies on the gated-based architecture, has currently only 20

qubits in total. However, IBM has recently announced their

plans5 for delivering a 50 qubit gate-based quantum computer

by 2020.

Once quantum computing becomes a commercial reality, it

may be used in wireless communications systems in order to

speed up specific processes due to its inherent parallelization

capabilities. While a classical bit may adopt either the values

0 or 1, a quantum bit, or qubit, may have the values |0〉, |1〉,
or any superposition of the two [9]–[11], where the notation

|·〉 is the ket representation [23] and it is the column vector

of a quantum state. If two qubits are used, then the compos-

ite quantum state may have the values |00〉, |01〉, |10〉 and

|11〉 simultaneously. In general, by employing b bits in a clas-

sical register, one out of 2b combinations is represented at

any time. By contrast, in a quantum register associated with

b qubits, the composite quantum state may be found in a

superposition of all 2b values simultaneously. Therefore, by

applying a quantum operation to the quantum register would

result in altering all 2b values at the same time. This repre-

sents the parallel processing capability of quantum computing.

Multiple quantum algorithms have been proposed [12], which

are capable of outperforming their classical counterparts in the

same categories of problems, by either requiring fewer com-

putational steps, or by finding a better solution to the specific

problem.

1https://www.dwavesys.com/d-wave-two-system
2As it will be explained in the following, decoherence may be considered

as detrimental noise in quantum circuits.
3https://www.dwavesys.com/d-wave-two-system
4https://quantumexperience.ng.bluemix.net/qx/experience
5https://www-03.ibm.com/press/us/en/pressrelease/53374.wss
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In this treatise, we will focus our attention on the employ-

ment of quantum algorithms in classical communication

systems, which may be termed as quantum-assisted communi-

cations [1], [9]. More specifically, the employment of quantum

algorithms may be capable of improving the already exist-

ing processes of classical communications, such as optimal

multi-user detection, channel estimation, finding the optimal

precoding matrix for the downlink of a multi-user system,

or finding the optimal route in a classical wireless network.

Quantum-assisted communications should be distinguished

from quantum-based communications [1], [10], [11]. In the

latter, quantum bits are transmitted and received over quantum

channels. By contrast, quantum-assisted communications may

be considered as a classical communication system like the

mobile broadband in the Long-Term Evolution (LTE) standard,

where hybrid classical and quantum processors are exchanging

information at the Base Station (BS).

B. Motivation for This Contribution

There is a number of well-established surveys on quantum

algorithms [24]–[27]. In [24], Williams detailed the operation

of Grover’s Quantum Search Algorithm (QSA) [28], [29] and

discussed its applications as a “subroutine” in other quantum

algorithms. Quantum walk-based search algorithms were the

focus of [25], arguing that they may be used for solving search

problems, such as finding out whether a list has unique entries,

or determining if a group’s elements are commutative with

each other. In [26], efficient quantum algorithms substantially

outperforming their classical counterparts were reviewed, with

a focus on their employment in algebraic problems. In [27],

Mosca reviewed a number of quantum algorithms, explaining

their operation and their associated computational complexity.

The website “Quantum Zoo” [30] has gathered a compre-

hensive list of quantum algorithms, briefly describing their

operation.

Against this background, the main motivation of this paper

is to make quantum computing and quantum algorithms

accessible to communication engineers, by investigating their

operation and employment in communication applications. We

provide a list of optimization problems in the area of wireless

communications that may be solved using a quantum com-

puter. We review quantum algorithms that have already been

used6 for solving existing problems in classical wireless com-

munication systems. Furthermore, we discuss both the “why”

and the “how” of quantum computation. Quantum computing

is still considered by the majority of communication engi-

neers as a term closely intertwined with physics. Therefore,

we assume that the reader has no background on quantum

computing and we aim for ripping off this mysterious cloak

from quantum computing by showing the quantum circuits

employed in the quantum algorithms presented. In this study

we have focused our attention on the associated algorithmic

6Since a universal quantum computer does not exist at the time of writing,
the operation of the quantum algorithms has been demonstrated with simu-
lations on classical super-computers. Please note that the practical creation
of the discussed quantum algorithms is out of the scope of this paper. Here
we assume that a universal quantum computer exists and that the discussed
quantum algorithms are available.

perspectives, with an emphasis on the potential performance

gain as well as on the attainable complexity reduction. Indeed,

we concur that also the other important practical requirements

have to be taken into consideration, such as the scalability and

timing requirements, the required hardware and the potential

reuse of existing hardware blocks in a modem chip along with

the integration between the classical and quantum parts of the

solutions presented, which have not been considered in this

paper.

The rest of the paper is structured as follows. In Section II

we state the basic postulates of quantum mechanics and

describe how quantum computing systems can be represented

and simulated by classical computers. We continue by offer-

ing a brief historical perspective of quantum computing and

review the operation of the most popular quantum algorithms.

In Section III, we describe a number of optimization prob-

lems that appear in wireless communication systems, along

with their associated classical, as well as quantum algorithms

that may be employed for solving them. Finally, we state a

number of open problems in Section IV and we conclude in

Section V. The paper’s structure is given in Fig. 1.

II. INTRODUCTION TO QUANTUM COMPUTING

A. Basics of Quantum Computing

1) The Qubit: The quantum state of a qubit may be repre-

sented using any chosen orthogonal basis. The most commonly

used basis is the computational basis [9], which corresponds to

the states |0〉 and |1〉. The quantum state |q〉 of a single-qubit

system in the computational basis {|0〉, |1〉} is [9]

|q〉 = a|0〉+ b|1〉, (1)

where a, b ∈ C are the amplitudes of |q〉 on the computational

basis and we have |a|2+|b|2 = 1. When a = 0, we have b = 1

and hence

|q〉 = |1〉, (2)

which corresponds to the classical bit value 1. Similarly, if

a = 1, then b = 0 and

|q〉 = |0〉, (3)

which again is a classical bit value. However, if we choose

a = b = 1/
√
2, then we have

|q〉 = 1√
2
|0〉+ 1√

2
|1〉. (4)

The quantum state in (4) seems to exhibit a symmetry with

respect to the orthogonal states |0〉 and |1〉, not favoring one

over the other. This state is widely used in most of the quantum

algorithms that we will investigate.

2) Geometrical Representation: Assuming only real-valued

amplitudes for a quantum state a, b ∈ R, the resultant 2-D

geometrical representation of a qubit’s state is shown in Fig. 2,

since its state may be written as in

|q〉 = cos(θ)|0〉+ sin(θ)|1〉. (5)

In the general case, the amplitudes of the quantum states are

complex-valued, therefore the state of a qubit is represented
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Fig. 1. The structure of the paper.

by the 3-D Bloch sphere [9]–[11] of Fig. 3, since a qubit’s

state may always be written as

|q〉 = cos

(

θ

2

)

|0〉+ eiφ sin

(

θ

2

)

|1〉. (6)

Many algorithms, such as Grover’s QSA [28], the

Boyer-Brassard-Høyer-Tapp (BBHT) QSA [31] and the

Dürr-Høyer (DH) QSA [32] only consider real-valued

amplitudes, therefore the 2-D representation is suitable for

Fig. 2. The 2D representation of a qubit, when the amplitudes of its quantum
states are real-valued.

Fig. 3. The generic 3D representation of a qubit using a Bloch sphere, when
the amplitudes of its quantum states are complex-valued.

their analysis. However, other algorithms, like Shor’s algo-

rithm [33] and the quantum counting algorithm [34] exploit

the complex-valued nature of the states’ amplitudes and the

Bloch sphere may be used for geometrically representing

their quantum states.

3) Measurement of a Qubit: Before we continue with the

investigation of the symmetrical state of (4), let us explicitly

mention that even though a qubit may be in a superposition of

two orthogonal states, if we desire to observe, or measure its

value, we will only obtain one of the two orthogonal states.

The measurement of a quantum state may be considered as

a Quantum-to-Classical (Q/C) conversion, since it allows us

to gain some insight on the quantum system.7 The measure-

ment of a qubit’s state may also be done in a basis different

from that which the qubit was prepared in. For now, let us use

the computational basis also for measuring a quantum state.

7Please note that the amount of insight obtained by a measurement heav-
ily depends on the context of the quantum algorithm or protocol which the
measurement is a part of.
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According to the Copenhagen interpretation [35], which is the

most widely adopted interpretation of a measurement’s opera-

tion, a quantum state does not have specific properties before

it is measured. However, when it is observed, the probabilities

of its superimposed states define not only the outcome of the

measurement, but also the new quantum state of the system.

The amplitudes a and b of the quantum state |q〉 in (1)

uniquely define the probabilities of obtaining |0〉 or |1〉, when

we measure the qubit’s state |q〉 on the orthogonal basis

{|0〉, |1〉}. More specifically, there is a |a|2 probability that

we will obtain the quantum state |0〉 and a |b|2 probabil-

ity that |1〉 will be observed. This is also the reason why

|a|2 + |b|2 = 1 is always true. For example, in (2) and (3),

since the system’s state is already equal to one of the two

states of the computational basis, which was used for the mea-

surement, we would always observe |1〉 and |0〉, respectively.

However, when we measure the quantum state of (4), there

is a |a|2 = 1/2 = 50% probability of obtaining the quantum

state |0〉 and |b|2 = 1/2 = 50% probability of obtaining the

quantum state |1〉. Since the probability of observing either of

the two states is the same, the quantum system of (4) is said

to be in an equiprobable superposition of states, always with

respect to the computational orthogonal basis.

After the measurement, the quantum state collapses to the

observed quantum state. For example, let us assume that the

output of the quantum state’s measurement in (4) was |1〉.
As mentioned before, this event had a 50% probability of

occurrence. Given that it has happened however, the system’s

quantum state from that point onwards becomes identical to

the observed quantum state, hence we have |q ′〉 = |1〉.
This feature is termed as wave function collapse in quantum

mechanics and it is irreversible. In other words, we are not

able to reconstruct the system’s quantum state to that before

the measurement, unless we have knowledge about the pre-

measurement amplitudes a and b of (1).

4) Algebraic Representation of a Quantum State: A quan-

tum state |q〉 may be fully described by its state vector [9]. The

size of the state vector |q〉 is equal to the number of orthog-

onal states that the quantum state could be superimposed in.

The values of the state vector |q〉 are the amplitudes of each

orthogonal state. For example, when a qubit is in the state

|q〉 = a|0〉+ b|1〉 as in (1), the 2-element state vector is

|q〉 =
[

a

b

]

= a|0〉+ b|1〉, (7)

implying that the first element corresponds to the amplitude

of the state |0〉, while the second element to the amplitude

of the state |1〉. As another example, the state vector of the

equiprobable quantum state of (4) is

|q〉 =
[

1√
2
1√
2

]

=
1√
2
·
[

1
1

]

. (8)

As expected, when more qubits are used, the system’s state

vector has more elements in order to accommodate the

amplitudes of all legitimate state combinations.

5) Multi-Qubit Quantum Registers: In a two-qubit register,

there are four legitimate states that the composite quantum

system can be superimposed in. If the first qubit of the register

is in the state |q1〉 = a|0〉 + b|1〉 and the second qubit is in

the state |q2〉 = c|0〉+ d |1〉, the state of the system is

|q〉 = |q1〉 ⊗ |q2〉 = |q1q2〉 (9)

= (a|0〉+ b|1〉)⊗ (c|0〉+ d |1〉) (10)

= a · c|00〉+ a · d |01〉+ b · c|10〉+ b · d |11〉 (11)

=

⎡

⎢

⎢

⎣

a · c
a · d
b · c
b · d

⎤

⎥

⎥

⎦

, (12)

where ⊗ is the tensor product operator and the system’s state

vector includes the amplitudes of the four quantum states |00〉,
|01〉, |10〉 and |11〉.

In general, in an n-qubit register, the state vector will have

2n entries, each corresponding to the amplitude of the respec-

tive orthogonal state. Now let us consider a 2-qubit register

with the following quantum state

|q〉 =
√
3

2
|00〉+ 1

2
|10〉 =

⎡

⎢

⎢

⎣

√
3
2
0
1
2
0

⎤

⎥

⎥

⎦

. (13)

After a potential measurement of that quantum register, there

is a (
√
3/2)2 = 0.75 probability of observing the state |00〉

and (1/2)2 = 0.25 probability of obtaining the state |10〉. It

is impossible to observe the states |01〉 or |11〉. We may also

observe that it is possible to rewrite its state as

|q〉 =
(√

3

2
|0〉+ 1

2
|1〉

)

⊗ |0〉 =
[ √

3
2
1
2

]

⊗
[

1
0

]

= |q1〉|q2〉.

(14)

This means that the first qubit is in a superposition (not

equiprobable) of its two possible states, while the second qubit

is at the state |q2〉 = |0〉. Since the state of the quantum register

may be written as a tensor product of the quantum states of the

individual qubits, the two qubits |q1〉 and |q2〉 are independent

of each other.

6) Entanglement: When the quantum states of two or more

qubits may not be represented separately and independently

of each other, the qubits are entangled with each other. For

example, let us consider the state

|q〉 = 1√
2
|00〉+ 1√

2
|11〉 =

⎡

⎢

⎢

⎢

⎣

1√
2
0
0
1√
2

⎤

⎥

⎥

⎥

⎦

. (15)

This 2-qubit register is in an equiprobable superposition of

the states |00〉 and |01〉. It is impossible to describe the

states of the two qubits individually as in (14).8 Therefore,

the two qubits of the quantum register in (15) are entangled.

Actually, the quantum state in (15) is one of the four Bell

states [36], [37],

1√
2
|00〉+ 1√

2
|11〉 (16)

8Try it, following the same methodology as in (13) and (14)!
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1√
2
|00〉 − 1√

2
|11〉 (17)

1√
2
|01〉+ 1√

2
|10〉 (18)

1√
2
|01〉 − 1√

2
|10〉, (19)

which are widely used, since they are the only four quan-

tum states of a two-qubit register that provide an equiprobable

entanglement between two qubits.

7) Partial Measurement of a Quantum Register: In a multi-

qubit quantum register, it is possible to only observe a subset

of the qubits it consists of. Therefore, when we measure one

of the qubits, its quantum state collapses to the observed state,

while the quantum state of the rest of the independent qubits

remains unaltered. However, this is not the case for the rest

of the entangled qubits, whose state will also be affected by

the observation of an entangled qubit.

As an example, let us try to only observe the second qubit

of the quantum register in (14). The second qubit has an 100%

probability of yielding the observation |0〉, therefore this is the

state we will obtain. At the same time, the state of the first

qubit |q1〉 =
√
3/2|0〉+1/2|1〉 will remain unaltered, because

it is in a superposition of its own, independent states.

Let us now try to measure the second qubit of the entangled

2-qubit register of (15). There is a (1/
√
2)2 = 0.5 = 50%

chance of observing either the state |0〉 or the state |1〉. Let us

assume that we observed the state |0〉. Therefore, the quantum

state of the second qubit collapses to |0〉. Based on (15), we

should notice that the state of the first qubit also collapses to

|0〉 instantaneously, upon obtaining the measurement output of

the second qubit. This happened because the whole quantum

register could either be observed in the state |00〉, or in the

state |11〉. Since we observed the second qubit in the state

|0〉, the first qubit can only be in the state |0〉 from this point

onwards.

Entanglement enables a plethora of applications, since it

allows instantaneous information exchange between qubits. As

it will be discussed in the following, the quantum algorithms

appropriately manipulate the available qubits in order to finally

measure a quantum state, which has a desirable property.

8) No Cloning Theorem: The irreversible nature of a

quantum measurement is exploited in quantum cryptogra-

phy [38]–[40], a field which also exploits the no cloning

theorem [41]. According to the no cloning theorem, it is

impossible to copy the unknown quantum state of a qubit into

the quantum state of another qubit, while keeping their states

independent of each other at the same time. In other words, it

is impossible to make independent copies of qubits, without

entangling them with each other in the process.

The rules of entanglement, the no cloning theorem and

the irreversible nature of measurements allow quantum-based

communications to be very promising for sharing private

keys between two parties. By exploiting these features in

the available QKD protocols, such as the Bennett-Brassard-

1984 (BB84) protocol [42], one or both parties become

capable of detecting whether an eavesdropper tempered with

their communications or not, due to the imperfections that

the eavesdropper would have imposed on the measured and

retransmitted states, since the eavesdropper would have been

unable to simply copy and forward the intercepted qubits. If

the two parties determine that an eavesdropper was present

during the transmission of the qubits, the whole process is

aborted and restarted.

9) Evolution of a Quantum State: The state of a quan-

tum register may be changed by applying unitary operators

or gates to its qubits [9]. Let us first investigate a single-qubit

system. One of the most widely used single-qubit unitary oper-

ators is the Hadamard operator H, which creates equiprobable

superpositions of the two states, given that the initial state was

either |0〉 or |1〉, as encapsulated in

H |0〉 = 1√
2
|0〉+ 1√

2
|1〉 = |+〉 (20)

H |1〉 = 1√
2
|0〉 − 1√

2
|1〉 = |−〉. (21)

The states |+〉 and |−〉 form the orthogonal Hadamard basis,

as depicted in Fig. 2. The matrix representation of the single-

qubit Hadamard operator is

H =
1√
2

[

1 1
1 −1

]

, (22)

while that of the two-qubit Hadamard operator is

H⊗2 =
1

2

⎡

⎢

⎢

⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤

⎥

⎥

⎦

. (23)

An n-qubit Hadamard gate has to be employed for creating

an equiprobable superposition of all legitimate states at the

beginning of most quantum algorithms, which is achieved by

applying it to an n-qubit quantum register in the all-zero state

|0〉⊗n . The circuit representation of the Hadamard gate is

shown in Fig. 4.

The parallel evolution of the state of a quantum register that

consists of multiple qubits is termed as quantum parallelism.

Quantum parallelism is one of the pivotal features of quan-

tum computing, which is exploited in order to create quantum

algorithms that solve problems by requiring for example fewer

CF evaluations than their classical counterparts.

Another popular set of single-qubit quantum gates is repre-

sented by the Pauli gates [9]–[11]

X=

[

0 1
1 0

]

, Z=

[

1 0
0 −1

]

, Y=

[

0 −i

i 0

]

. (24)

Explicitly, the X operator is the NOT gate, also known from

classical logic circuits, since it swaps the amplitudes of the

quantum states of a qubit as in

X (a|0〉+ b|1〉) =
[

0 1
1 0

]

·
[

a

b

]

=

[

b

a

]

= b|0〉+ a|1〉.

The Z operator is the gate imposing a phase shift by π radians,

since it flips the sign of the amplitude of just the state |1〉, as

described in

Z (a|0〉+ b|1〉) =
[

1 0
0 −1

]

·
[

a

b

]

=

[

a

−b

]

= a|0〉 − b|1〉.
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Fig. 4. The circuit representation of the Hadamard gate H, of the three Pauli
gates X, Z and Y, as well as of the Controlled-NOT operation, of the general
Controlled-U gate and of the Toffoli gate.

The Y operator may be considered as a combination of the X

and Z gates, since it results in

Y (a|0〉+ b|1〉) =
[

0 −i

i 0

]

·
[

a

b

]

=

[

−ib

ia

]

= i(−b|0〉+ a|1〉).

The circuit representation of the Pauli gates is also depicted

in Fig. 4.

Other popular gates require the use of control qubits. For

example, the Controlled-NOT (CNOT) gate applies the NOT

operation to the qubit |q2〉, only when the qubit |q1〉 is in the

state |1〉, as described by

CNOT =

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥

⎥

⎦

. (25)

For example, if the first (control) qubit was in the state |q1〉 =
a|0〉+b|1〉 and the second (target) qubit was in the state |q2〉 =
c|0〉+ d |1〉, the CNOT gate would result into

CNOT (|q1〉|q2〉) = a · c|00〉+ a · d |01〉+ b · d |10〉
+ b · c|11〉

=

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥

⎥

⎦

·

⎡

⎢

⎢

⎣

a · c
a · d
b · c
b · d

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

a · c
a · d
b · d
b · c

⎤

⎥

⎥

⎦

= a · c|00〉+ a · d |01〉

+ b · d |10〉+ b · c|11〉.

TABLE I
OPERATION OF A CU GATE

We may observe that the amplitudes of the quantum states

where the first qubit is equal to |1〉 have been swapped. In

general, the Controlled-U gate applies a general quantum gate

U to a target qubit only when the control qubit is equal to |1〉,
as described by

CU =

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 u11 u12
0 0 u21 u22

⎤

⎥

⎥

⎦

, (26)

where the aforementioned general single-qubit unitary opera-

tor U is

U =

[

u11 u12
u21 u22

]

. (27)

When the control qubits is equal to |0〉, the identity gate is

applied to the target qubit, as stated in (26). Table I states the

operation that the CU gate would carry out based on the four

possible quantum states of two qubits, where the first one is

the control qubit and the second one is the target qubit.

Finally, the Toffoli gate accepts two control qubits and flips

the state of the target qubit, if and only if both control qubits

are in the state |1〉. The matrix representation of the Toffoli

gate is [9]:

CCNOT =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (28)

The circuit representation of the controlled gates is also

depicted in Fig. 4. Table II portrays both the initial and resul-

tant states of a three-qubit register, when the Toffoli gate is

applied to it, where the first two qubits are the control qubits

and the last one is the target qubit.

B. A Leap Into the Quantum World

Research on quantum mechanics was initiated by Planck,

Bohr, Heisenberg, Einstein and Schrödinger in 1923. Even

though arguments and conflicts arose regarding whether the

theory of quantum mechanics encapsulates a complete descrip-

tion of Nature, it is currently considered as the most suitable

interpretation of both the microscopic and the macroscopic

worlds.
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Fig. 5. Timeline of quantum computing milestones.

The inspiration of quantum computation was provided by

Feynman [43], who proposed in 1981 a novel framework for

conveying information by the spin of an electron and for sim-

ulating the evolution of the quantum states. In the following

year, Benioff [44] proposed a technique of simulating quantum

systems on Turing machines. Based on these contributions,

further quantum algorithms were inspired. In the following

sections we describe the general problems and the high-level

operation of the major quantum algorithms, before delving

into their applicability in wireless communications. A short

description of the major quantum algorithms is provided in

Fig. 5.

1) The Deutsch Algorithm: A few years later, the bene-

fits of quantum parallelism were exploited by Deutsch [45],

who conceived an algorithm, which now has the fond con-

notation of Deutsch algorithm. Let us first define the black

box problem that we can solve using Deutsch’s algorithm.

Generally, a black box problem involves a function f, whose

operation is unknown. We have to determine the features of the

function by only evaluating it with the aid of different input

arguments and then observing its corresponding outputs. Here,

we have to determine whether the binary function f : {0, 1}

→ {0, 1} does or does not have a one-to-one mapping. When

the function f has a one-to-one mapping we would expect
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TABLE II
OPERATION OF A TOFFOLI GATE

f (0) ⊕ f (1) = 1, otherwise it would be f (0) ⊕ f (1) = 0, since

that would mean f (0) = f (1), where ⊕ is the modulo-2 addi-

tion. In classical computing, a single evaluation for each of the

legitimate inputs would be required, bringing the total number

of function evaluations to two. Deutsch algorithm [45] suc-

ceeds in determining whether the function f has a one-to-one

mapping by only using a single function evaluation.

2) The Deutsch-Jozsa Algorithm: An extension of this

algorithm, namely the Deutsch-Jozsa algorithm [46], was con-

ceived for determining whether a function f : {0, 1}n →
{0, 1} is balanced or constant.9 Let us consider the problem in

a real scenario, where the two parties Alice and Bob commu-

nicate with each other. Alice sends an n-bit number to Bob,

who uses it as the input argument of his function f. Bob then

transmits back the output bit. Alice has to determine whether

the function that Bob used was balanced or constant. In classi-

cal computing, the best-case scenario would only be achieved

if the function was balanced, Alice transmitted two different

numbers and these two numbers happened to yield the two

different outputs. The worst-case scenario is always encoun-

tered, when the function is constant, since Alice has to transmit

(2n−1 +1) different input arguments (one more than half the

set of inputs), before she realizes that the function Bob is using

is constant. By using the Deutsch-Jozsa algorithm, Alice is

able to determine whether the function f used by Bob is bal-

anced or constant, with just a single transmission of n qubits in

an equiprobable superposition of all possible inputs. Bob uses

an extra auxiliary qubit, Hadamard gates and a quantum gate

Uf that performs the same operation as f, but accepts qubits

as its inputs. Finally, Bob measures the quantum state of the

n qubits at the output of his quantum circuit. If the observed

state is the all-zero state |0〉⊗n , the function f is constant,

otherwise it is balanced.

The Deutsch-Jozsa algorithm solves the generalized black-

box problem of the previous section. Indeed, if the function f

allows only 0 or 1 as its legitimate inputs, determining whether

9A function f is constant if it yields the same value at its output regardless
of the input argument. On the other hand, a function f is balanced, if it yields
one value (e.g., 0) for half the input arguments and another value (e.g., 1) for
the other half of the input arguments.

the function has a one-to-one mapping, or if it is balanced

answers exactly the same question. The algorithm was later

improved by Cleve et al. [48] for achieving a 100% probability

of success.

The Deutsch-Jozsa algorithm laid the foundations for the

development of the so-called Quantum Oracle gates [9],

which are quantum circuits implementing a generic function

f : {0, 1}N → {0, 1}M and they are capable of calculating

all the pairs of possible inputs-outputs of f using a single call

of f by exploiting quantum parallelism.

3) Simon’s Algorithm: In 1994, Simon managed to solve

a black-box problem by using on the order of O(n) queries

addressed to the black box, while the optimal classical algo-

rithm has to use Ω(2n/2) queries for the same task [47]. The

black box Uf implements a function f : {0, 1}n → {0, 1}n
and has the property that f (x) = f (y) if and only if x = y

or if x ⊕ y = s, for some unknown s ∈ {0, 1}n , where

x , y ∈ {0, 1}n . Simon’s algorithm succeeds in finding the

value s that satisfies the function’s above-mentioned property.

4) Shor’s Algorithm: In 1994, Shor proposed a quantum

algorithm [33], [57] for efficiently solving the problem of

factoring a given integer N. The best classical algorithm is

the General Number Field Sieve (GNFS) [58]. Shor’s algo-

rithm requires an exponentially lower complexity than the

GNFS, which is achieved by combining classical and quan-

tum processing. It first reduces the factoring problem to the

so-called order-finding problem addressed below using a clas-

sical algorithm. Initially, it randomly picks a number a<N.

Let us assume that the greatest common divisor between a

and N is equal to 1.10 Then a quantum circuit is employed for

finding the period r of the function12

f (x ) = ax mod N . (29)

If the estimated period r is even and ar/2 = −1 mod N is

false, then gcd(ar/2 + 1,N ) and gcd(ar/2 − 1,N ) are two

non-trivial factors of N and the algorithm ends.

The order-finding quantum algorithm initially creates an

equiprobable superposition of C = 2c states, using an appro-

priate number of c qubits,13 as shown in Fig. 6. It then employs

controlled-Uf operators,14 where each of the c qubits controls

the operation of a quantum gate that performs the function

f (x) of (29) on n = log2N auxilliary qubits. All n auxiliary

qubits should initially be in the quantum state |1〉⊗n . This

part is the bottleneck of Shor’s algorithm, since it requires

the operation of multiple controlled-Uf gates and n = log2N
auxilliary qubits. Therefore, when N is high, more gates are

required for a single Uf operation. At the same time, when C

is high, the estimation of the period will be more accurate, but

10If the greatest common divisor between a and N was not equal to 1, then

a would be a non-trivial factor11 of N and the algorithm ends, since N can
be factored in a and N/a. Then we have the problem of factoring i and N/a,
if they are not prime numbers, and so on.

12The period of a function f (x) is the smallest positive integer r so that
f (x+r) = f (x) for all values of x.

13Any number of qubits c that results in C = 2c states such that N 2 ≤
C < 2N 2 would suffice.

14Please note that a controlled-Uf gate performs the Uf gate to the input

target qubits only if the control qubits are in the state |1〉. When the control
qubits are in the state |0〉, the identity operator is applied instead.
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Fig. 6. The quantum circuit employed in Shor’s algorithm for finding the period of the function in (29) [33].

more controlled-Uf operations are required, hence increasing

the complexity.

After the operation of the controlled-Uf gates in Fig. 6,

the c qubits pass through an Inverse Quantum Fourier

Transform (IQFT) [10], [59] operator. The IQFT has the same

effect as a classical IDFT, where the amplitude of each of the

superimposed states is equally spread over the amplitudes of

the resultant superimposed state. At the output of the IQFT, if

we measure the resultant state of the c-qubit register, we will

obtain a value |q〉, which may then be classically processed to

approximate the period r. As mentioned earlier, after finding

the period i, classical processing is employed for the rest of

Shor’s algorithm.

5) Quantum Phase Estimation Algorithm: A few years after

Shor’s algorithm was introduced, the order-finding quantum

algorithm of Fig. 6 used in Shor’s algorithm was found in [48]

to be just a specific application of a general quantum cir-

cuit and algorithm, which is termed as the Quantum Phase

Estimation Algorithm (QPEA). The QPEA follows exactly the

same procedure as the period-finding quantum algorithm of

Section II-B4. More specifically, given a unitary operator U

that operates on n qubits and an eigenvector |φ〉, such that

U |φ〉 = 2iπθ|φ〉, (30)

the QPEA estimates the period θ, which means that it can

find the eigenvalue of a unitary operator. The quantum circuit

of the QPEA is given in Fig. 7. The upper c qubits are termed

as the control register, while the bottom n qubits represent the

function register.

The QPEA is used as a building block for multiple quantum

algorithms. As an example, let us now revisit Shor’s algorithm,

for the sake of relating it to the operation of the QPEA. In

Shor’s algorithm, the factoring problem was reduced to finding

the period r of the function f (x) of (29). In order to solve this

problem, we have U = f (x) and θ = r in (30). Comparing the

quantum circuits of Fig. 6 and Fig. 7, we may observe that in

the former, the n qubits of the function register are initialized

to the all-one state |1〉⊗n , because it is one of the eignevec-

tors of f (x) of (29). Essentially, since we force a controlled

function CU to operate on its eigenvectors, instead of alter-

ing the quantum states of the function register, we manage to

rotate the states of the c-qubit control register. By applying

the QFT to that control register, we are able to estimate the

phase, eigenvalue, or period of the unitary transform U, upon

its measurement.

6) Grover’s Quantum Search Algorithm: In 1996,

Grover [28], [29] proposed a Quantum Search Algorithm

(QSA), which solves a search problem. Specifically, the

search problem seeks to find a desired value δ in a database

of N entries. We aim to find which of the N entries is

equal to δ, i.e., we are interested in finding the position of

δ in the database. If the database is sorted from lowest to

highest values, the classical iterative halving-based search

algorithm [60] is indeed optimal. On the other hand, if the

database is unsorted, the optimal classical algorithm relies on

a full search of the database. The average complexity of the

full search would be on the order of O(N) database queries.

The worst case scenario occurs when the desired value is

found at the entry that is checked last.

By contrast, Grover’s QSA succeeds in finding the desired

entry with 100% probability of success after querying the

database on the order of O(
√
N ) times [28]. This provides a

quadratic reduction in complexity over the classical full search.

Grover’s QSA has been shown to be optimal by Zalka [61].

However, Grover’s QSA requires some additional knowledge

about the database. More explicitly, Grover’s QSA employs the

Grover operator G depicted in Fig. 8 Lopt number of consecu-

tive times. Apart from knowing N and (obviously) the desired

value δ, additionally Grover’s QSA requires the knowledge of

how many times the entry δ appears in the database, which is

termed as the number of solutions S. For example, when we

have δ = 2 and N = 16, if S = 3 entries out of N = 16 are

equal to δ = 2, a different number of iterations Lopt is used in

Grover’s QSA, compared to the scenario, where only S = 1 out

of N = 16 entries is equal to δ = 2. However, in both exam-

ples the same procedure is followed at each iteration. Using

fewer or more Grover iterations than Lopt may reduce the

success probability, which might even approach 0%. Grover’s

QSA relies on the generic amplitude amplification process of

Brassard et al. [50]. Explicitly, the optimal number of Grover

operator applications is Lopt = ⌊0.25π
√

N /S⌋.

In Fig. 8, the n = log2N qubits in the register |x 〉1 are

initialized to an equiprobable superposition of N states, each

corresponding to the index of an entry in the database. The

unitary operator O is termed as the Oracle, which marks the

indices of the specific entries in the database that are equal
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Fig. 7. The quantum circuit of the Quantum Phase Estimation Algorithm, which estimates the eigenvalues of a unitary operator U, which corresponds to its
eigenvector |φ〉, as described in (30) [48].

Fig. 8. Grover operator’s quantum circuit including an Oracle, two n-qubit Hadamard gates H and an n-qubit phase shift gate P0. The HP0H operator
forms the diffusion operator of the Grover operator G = HP0H ·O [28].

to the sought value δ. Specifically, the Oracle marks an index

by changing its sign in the superposition of states. In order

to achieve this, an auxiliary qubit |w〉1 initialized to the |−〉
state is used, along with the value δ represented in form of

a quantum state. The two Hadamard gates H and a phase

rotation gate P0 that follow the Oracle in Fig. 8 constitute

the diffusion operator of Grover’s circuit, which essentially

changes the amplitude of each state by reflecting it with respect

to the average amplitude of the current superposition of the

states. This has been proven in [28] to result in an amplitude

closer to
√

1/S for each of the specific S states that correspond

to the solution entries, while yielding a lower amplitude for

the rest of the states that do not correspond to solutions. By

repeating this process Lopt number of times, the amplitudes

of the S quantum states in the superposition that correspond to

solution entries gradually become close to
√

1/S , resulting in

an S · (
√

1/S )2 = 100% probability of observing a state that

is indeed the solution state. The resultant amplitude of each

solution state prior to measurement is equal to
√

1/S because

all solution states are treated in the same way in Grover’s

QSA and hence have the same probability (
√

1/S )2 = 1/S
of being observed at the output.

Let us clarify the operation of Grover’s QSA with the aid

of an example. Let us assume that a database has a size of

N = 32 entries. Let us also assume that the sought value δ
is only stored in a single entry of the database, but we do

not know in which portion exactly. Therefore, we have a sin-

gle solution S = 1, leading us to apply the Grover operator

Lopt = ⌊0.25π
√

N /S⌋ = 4 times. As shown in Fig. 9a, we

commence with an equiprobable superposition of all indices,

since we do not have a particular preference as to which may

be associated with the desired entry. After applying the Oracle

operator in Fig. 9b, the sign of the amplitude of index 18 is

flipped.15 The red dashed horizontal line in Fig. 9 indicates

the mean value of the amplitudes of all superimposed states

after the application of the Oracle. In Fig. 9c, the diffusion

operator reflects the amplitudes of each state with respect to

the aforementioned mean value of the amplitudes. This con-

cludes the first iteration of Grover’s QSA. We may conclude

that the index 18 has a higher probability of being observed at

this stage than the rest of the superimposed states. However,

we may increase the probability of observing the solution

state 18 even further by applying three more Grover iterations.

Following the same approach, Fig. 9d and Fig. 9e character-

ize the second Grover iteration, Fig. 9f and Fig. 9g the third

Grover iteration, while Fig. 9h and Fig. 9i illustrate the fourth

and final Grover iteration. In Fig. 9i, the probability of observ-

ing the solution state 18 after the fourth Grover iteration is

equal to 99.92%. Again, these intermediate steps of Grover’s

QSA are not readily accessible to us, therefore we have to find

another way of determining, when to stop the iterations and

observe the resultant state. For that, we have to know both

the number of solutions in the database and the size of the

database.

Please note that if there are no solutions in a search problem,

corresponding to S = 0, the Oracle in Fig. 8 will not mark

any quantum state and hence the diffusion operator will leave

the amplitudes of the quantum states unaltered, since the

amplitude of each of the states found in an equiprobable

15Please note that in practice we will not be aware of that, since we have
not observed the quantum system yet. However, for the sake of clarity, we
show the intermediate steps of Grover’s QSA.



1220 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 2, SECOND QUARTER 2019

Fig. 9. Example of Grover’s QSA in a database with N = 32 entries, where the searched value exists only in the entry with index 18. Since there is only a
single solution S = 1 in a database of size N = 32, we have to perform Lopt = 4 Grover iterations. The red dashed lines indicate the mean value of the
amplitudes after each Oracle operation.

superposition of states is equal to the average amplitude and

hence a reflection with respect to the average amplitude will

not affect the system. Therefore, regardless of the number of

Grover iterations, the initial superposition will not change and

a potential measurement at the end will result in any of the

N states with equal probability. We can then classically check

that the observed index does not correspond to a solution in

the database, and hence conclude that there is no solution to

the search problem.

7) Boyer-Brassard-Høyer-Tapp Quantum Search

Algorithm: Nevertheless, requiring a priori knowledge

of the number of solutions that exist in the system may

not always be viable in practical engineering problems. A

beneficial extension of Grover’s QSA has been introduced

by Boyer et al. [31] in the form of the so-called Boyer-

Brassard-Høyer-Tap (BBHT) QSA, which is applicable in

the specific scenario, where the actual number S of valid

solutions is unknown, whilst imposing the same order of

complexity as Grover’s QSA, namely O(
√
N ) in a database

having N entries. The BBHT QSA solves the same problem

as Grover’s QSA, while assuming less knowledge about

the database. Therefore, it may be employed in a higher

number of engineering problems, where no information is

available about the entries of the database. Since the number

of solutions S is unknown, we are unable to find the optimal

number of Grover iterations Lopt that we should apply to the

initial equiprobable superposition of states in Fig. 8. Hence, it

employs classical processing and a “trial-and-error” approach

for finding Lopt , proven to eventually lead to a 100%

probability of success in [31]. The flowchart of the BBHT

QSA is depicted in Fig. 10, where λ = 6/5 is a constant that

should be chosen to be in the range [6/5, 4/3] [31]. If the

BBHT QSA is not terminated after 4.5
√
N applications of

Grover’s operator, we may conclude that there is no solution

for this search problem.

8) Dürr-Høyer Quantum Search Algorithm: A quantum

search algorithm that solves a different search problem was

conceived by Dürr and Høyer [32]. More specifically, the Dürr-

Høyer (DH) QSA is employed for identifying the extreme

values of an unsorted database having N entries, while impos-

ing a low complexity, which is on the order of O(
√
N ). In

this problem, either the minimum or the maximum entry of a

database is sought, without knowing the specific value of that

minimum or maximum entry. Therefore, the sought value δ
is unknown. Let us describe the problem, when the minimum

entry of the database is desired, without any loss of generality,

as described in the flowchart of Fig. 11. The DH QSA starts by

randomly picking one of the N entries in the database. Let us

assume that the randomly selected entry has a value δi and an

index i. It then invokes the BBHT QSA for finding any entry

that has a lower value than the randomly picked one. Since

there is no knowledge about the database, it is not possible

to know how many entries have a value lower than δi , there-

fore only the BBHT QSA can be used. If we somehow were
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Fig. 10. Flowchart of the BBHT QSA. The colored box represents the
operation of Grover’s QSA’s quantum circuit of Fig. 8, while the rest of
the steps are performed in the classical domain. The value of λ remains
constant throughout the operation, while m is always initialized to 1. When

the maximum number of allowed iterations Lmax is at least 4.5
√
N , there

is a ≈ 100% probability of success.

aware of the number of entries that have a value lower than

δi , then Grover’s QSA could also be used. Once an entry with

a lower value than δi is found, corresponding to the index xs
and hence f (xs) < δi , we update the value δi with the newly

found entry’s value δi = f (xs). Then another BBHT QSA

iteration is employed for finding an entry that has a lower

value than the updated δi . This process is repeated until no

better value is found.

Since the DH QSA uses the BBHT QSA, its minimum com-

plexity is equal to 4.5
√
N Grover iterations, referring to the

case, where the initially selected entry δi was indeed the min-

imum entry in the database. That would result in the BBHT

QSA not being able to find an entry with a lower value, causing

it to terminate after 4.5
√
N applications of Grover’s operator.

The maximum number of Grover iterations required for finding

the minimum of the database was proven by Dürr and Høyer

to be equal to 22.5
√
N Grover iterations [32]. In [62] it was

shown that if the initial entry is carefully chosen instead of

Fig. 11. Flowchart of the DH QSA. The colored box represents the operation
of Grover’s QSA’s quantum circuit of Fig. 8, while the rest of the steps
are performed in the classical domain. The randomly selected index i at the
beginning of the algorithm may be replaced by a deterministically selected
index, if there is knowledge that specific indices are favoured to correspond to
low-valued entries. The maximum number of applications of Grover’s operator

is Lmax = 22.5
√
N .

being randomly chosen, the average complexity of the DH

QSA is further reduced. At the same time, if offline statistics

are available about the database of the specific engineering

problem, a one-to-one relationship between the number of

Grover iterations used and the success probability may be

found [62].

9) Quantum Counting Algorithm: In 2000, Brassard et al.

proposed the Quantum Counting Algorithm (QCA) [50], by

combining Grover’s QSA [28] and the QPEA [48]. The

problem that is solved by using the QCA is the search for the

number of solutions S in a search problem. Given a database

having N entries, we are interested in finding how many times

a known value δ appears in the database, without aiming to

find its position in the database. In order to achieve this,

the controlled-Uf gates of Fig. 7 are replaced by controlled-

Grover operators. Explicitly, the Grover operators of Fig. 8,

are used in the quantum circuit of Fig. 12. Furthermore, the

function register consists of n = log2N qubits initialized in an

equiprobable superposition of 2n = N states. The eigenvector
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Fig. 12. The quantum circuit of the Quantum Counting Algorithm [34]. It employs the quantum circuit of the QPEA shown in 7, where the U operator
is the Grover operator G and the quantum function register is initialized to an equiprobable superposition of all states, which represents the eigenvector of
Grover’s operator.

of Grover’s QSA consists of a superposition of the specific

states that do correspond to solutions in the database and a

superposition of the states that do not correspond to solutions

in the database. By creating an equiprobable superposition of

all states at the beginning of the circuit, we essentially feed the

controlled-Grover operators with their eigenvector. Therefore,

an application of Grover’s operator to such a superimposed

state will result in a rotation of their amplitudes [50]. The

rotation angle depends on the ratio between the number of

solutions S and the size of the database N. Therefore, by

applying the QPEA using Grover’s QSA, the QCA obtains

the number of solutions S upon observing the control register

at the output of the QFT seen in Fig. 12, followed by classical

processing.

The QCA’s accuracy depends on both the number of qubits

in the control register c. Its complexity depends on both the

number of qubits in the control register c and in the func-

tion register n. In other words, the complexity to be invested

depends on the required accuracy in terms of the number

of solutions, as well as on the size of the database. Again,

the optimal classical algorithm is the full search, since all

entries in the unsorted database should be checked in order

to count the number of solutions. This results in a complexity

on the order of O(N) for the full search. The QCA achieves a

quadratic speedup compared to the full search, with the spe-

cific complexity required depending on both the estimation

error margin and on the size of the database [50].

10) Quantum Heuristic Algorithm: In 2000, Hogg proposed

a Quantum Heuristic Algorithm (QHA) [51], [52], which relies

on Grover’s QSA’s circuit. The aim of the QHA is to solve

the particular optimization problem of finding either the mini-

mum or the maximum of a database by requiring fewer CFEs

than the DH QSA, when the database has some form of

correlation. In more detail, Grover’s QSA, the BBHT QSA

and the DH QSA are optimal, when they perform search

in an unsorted database. When the entries of a database are

inherently correlated to each other, heuristic algorithms may

succeed in solving the optimization problem, while requiring

fewer queries to the database. In order to achieve this, Hogg

changed both the Oracle and the diffusion operator used in

Grover’s QSA. Recall that in Grover’s QSA, where δ is known,

the Oracle marks the quantum states that correspond to solu-

tions by flipping the sign of their amplitudes. This may be

interpreted as a rotation by π for the amplitudes of the solu-

tion states and no rotation for the rest of the states. Since in

the optimization problem the minimum value δ is unknown,

Hogg conceived a different Oracle, where the rotation angle of

the amplitudes of each state depends on the value of the entry

it corresponds to. The QHA has been demonstrated to outper-

form Hogg QSA [51], but it needs fine-tuning for each specific

system and scenario, since the exact rotation angles applied by

the Oracle and the diffusion operator have to be appropriately

chosen. This is reminiscent of the employment of classical

heuristic algorithms, like the Genetic Algorithm (GA) [63],

[64], where the algorithm’s parameters have to be carefully

selected in order for a heuristic algorithm to converge to the

solution.

11) Quantum Genetic Algorithm: In order to solve the same

optimization problem of finding either the minimum or max-

imum of a database, Malossini et al. proposed the Quantum

Genetic Algorithm (QGA) [53], which is an amalgam of the

classical GA [63], [64] and of the DH QSA. Please note that

as with the QHA, the QGA may be employed in particular

problems, where there is correlation between the entries of

the database.

More specifically, in the classical GA, a population of P

agents or chromosomes is generated, where each agent repre-

sents an index of the database. The database is then queried

P times, once for each of the agents of the population. After

combining the two best so-far found16 agents, the next gener-

ation of the population is created based on them, with the aim

of having agents representing even smaller values. Eventually,

after a sufficiently high number of generations, an agent corre-

sponding to the minimum value of the database is found. Since

it cannot be mathematically predicted, when the GA will find

the minimum of the database, the algorithm is terminated after

a predetermined number of generations.

In the QGA, the same procedure is followed as in the GA

with one difference. The DH QSA is invoked for searching

16By “best so-far found” we refer to the agents that correspond to the
smallest entries in the database in that population.
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Fig. 13. The quantum circuit of the Quantum Mean Algorithm [55]. It employs the quantum circuit of the QPEA shown in 7, where the U operator is the
function’s operator Uf = f (x). The quantum function register is initialized to the superposition of states |Ψ〉, using n Hadamard gates and the operator A,
which includes two operations of Uf and a controlled rotation of the (n+1)th auxiliary qubit. The circuit estimates the mean value of the function’s values

a =
∑N

x=0 f (x)/N .

through the population of each generation for finding the best

agents. In other words, the DHA QSA in the QGA is employed

for reducing the complexity imposed by the GA while query-

ing the database during each generation. Since only the two

best agents have to be found in order to create the subse-

quent generation’s population, the DH QSA may be employed

twice. The QGA was demonstrated to outperform the GA for

the same complexity, or to require a lower complexity for the

same success probability.

12) Harrow-Hassidim-Lloyd Algorithm: The Harrow-

Hassidim-Lloyd (HHL) algorithm [54] is a quantum

algorithm, which relies on the QPEA and solves linear

systems of equations at an exponential reduction of the

computational complexity required. The problem of solving

a linear system of equations may be formulated as follows.

Given an (N × N)-element matrix A and an (N × 1)-element

vector b, find an (N × 1)-element vector x, so that we have

A · x = b.

In order for the HHL algorithm to be practically applica-

ble, the goal of the problem should be a bit different from

the aforementioned one. The linear system of equations has to

exhibit a few specific features. Firstly, the output is a superpo-

sition of N states |x 〉, where the values of the solution vector

are encoded in the amplitudes of that superposition of states.

Therefore, it cannot provide all values of the solution vector

x for further classical processing. Alternatively, it may result

in specific properties for the solution vector, for example for

its moments. Moreover, both the solution vector −→x and the

vector
−→
b should be unit-vectors. Furthermore, the matrix A

should be sparse.

The HHL algorithm estimates the eigenvalues of the

matrix A, using an appropriately modified version of the

QPEA of Section II-B5. The QPEA circuit is employed as

a subroutine of an amplitude amplification procedure in the

HHL algorithm, in order to further reduce its complexity of

obtaining the solution quantum state |x 〉. The HHL algorithm’s

complexity was further reduced by Ambainis in [67], while the

precision of the estimated solution was exponentially increased

by Childs et al. in [68].

13) Quantum Mean Algorithm: In 2011,

Brassard et al. [55] proposed the Quantum Mean

Algorithm (QMA), which succeeds in finding the mean

value a =
∑N

x=0 f (x )/N of a function f requiring an

exponentially reduced number of evaluations of the function

than the optimal classical algorithm, since the latter would

require access to all legitimate evaluations of the function.

In order to achieve this, a modified QPEA is used, where

the controlled-Uf operation evaluates the output of the

function f to its inputs, as illustrated in Fig. 13. One of

the main differences between the QMA and the QPEA

is that even though there are N legitimate inputs for the

function f, log2(N ) + 1 = n + 1 qubits are employed in

the function register, instead of n = log2(N ), which would

have been the case in the QPEA. The above-mentioned

extra qubit is required, because the function register is

initialized using a unitary operator A, which relies on the

function f and it performs controlled-rotations on the extra

qubit [55], [56]. At the output of the unitary operator A,

there is a superposition of states |Ψ〉. Each state of Ψ was

used for evaluating Uf in the unitary operator A. Based

on the Uf and the controlled-rotations imposed on the

auxiliary qubit, the amplitudes of half of the states in |Ψ〉
are equal to their respective function’s output. In fact, this

is true for the specific states, for which the auxiliary qubit

is equal to |1〉. The size of the control register determines

the precision of the estimated mean value, similarly to

the QPEA.

14) Quantum Weighted Sum Algorithm: The Quantum

Weighted Sum Algorithm (QWSA) [56], [69] is based on

the QMA of Section II-B13 and it finds the weighted sum

of the values of a function f with N inputs, again requiring

O(
√
N ) evaluations of the function f. The difference between

the QWSA and the QMA is the initialization of the function

register, as seen in Fig. 14. Instead of initializing it in an

equiprobable superposition of states, the inputs of the func-

tion f are initializated in a superposition of states, where each

state’s amplitude is the weight of the wanted weighted sum.

Therefore, the QWSA may be considered as a generalization

of the QMA, since in the latter all weights are the same and

equal to 1/N in an N-element database, resulting in the use of

Hadamard gates instead of general unitary rotation gates, as

shown in Fig. 13.
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Fig. 14. The quantum circuit of the Quantum Weighted Sum Algorithm [56]. It employs the quantum circuit of the QMA shown in 13, with the difference
that the quantum function register is not equiprobably initiliazed. Rather, the initilization is performed based on unitary rotation gates, which rely on the
weights of the desired weighted sum.

Last but not least, an overview of the quantum algorithms

discussed in this survey in terms of their application and com-

plexity is carried out in Tables III and IV. In terms of practical

implementation, IBM Q Experience has a drag and drop editor

for the sake of synthesizing quantum circuits out of the funda-

mental quantum gates of Fig. 4 as well as a Python toolkit17

for designing more complex quantum circuits. Consequently,

Grover operator’s quantum circuit, presented in Fig. 8, may

be readily implemented using IBM’s framework at least for a

limited number of qubits. Nevertheless, we should state that at

the time of writing, there has not yet been any real-life demon-

stration of employing a quantum-assisted solution in order to

solve a practical wireless problem. Therefore, the comparisons

between the classical and the quantum solutions employed in

the wireless communication problems in the following section

are based on the theoretical capabilities of the algorithms.

III. OPTIMIZATION PROBLEMS AND QUANTUM

ALGORITHMS IN COMMUNICATIONS

Let us now shift our attention to discussing potential

applications in the field of wireless communications, which

would benefit from using a quantum computer. Most of these

optimization problems in the current state-of-the-art employ

algorithms for finding suboptimal solutions, because of the

excessive cost of finding an optimal solution. This is partic-

ularly so for joint optimization of several functions, such as

joint channel estimation, data detection and synchronization

for example, or for multi-component optimization, where the

search space is expanded.

A. Multi-User Detection

1) The Problem: In the uplink of an OMA system, like

Code Division Multiple Access (CDMA) [70], Orthogonal

Frequency Division Multiple Access (OFDMA) [71], Single-

Carrier Frequency Division Multiple Access (SC-FDMA) or

Time Division Multiple Access (TDMA), the users are either

allocated all available resources in a round-robin fashion, or

they are allowed to share orthogonal resources simultaneously.

For example, in TDMA the whole bandwidth is allocated to a

single user for a few time slots. On the other hand, in CDMA

17https://developer.ibm.com/code/open/projects/qiskit/

the whole bandwidth is used by all users supported in the

system simultaneously, in order to transmit their narrowband

signal after spreading it by a unique user-specific, orthogonal

spreading code. In OFDMA, where the spectrum is partitioned

in multiple orthogonal subcarriers, each user may be allocated

a subset of user-specific subcarriers, which no other user is

allowed to activate.

By contrast, in the uplink of a NOMA system [5], [72]–[76]

the users are allowed to simultaneously share the same

frequency and time resources in order to increase the cell

throughput by being able to support more users simultane-

ously. However, the BS now has the new task of extracting

the signal of each user from the received superposition of sig-

nals,18 as illustrated in Fig. 15, given the knowledge of the

channel states and the symbol constellation that was used by

each user. In more detail, each user transmits its own symbol

based on its constellation. Since the system is synchronous,

every transmitted signal is added together at each receive

antenna. Each transmitted signal is modified based on the

channel it utilizes. At the receiver, Additive White Gaussian

Noise (AWGN) is added at each receive RF chain. The Multi-

User Detector has to estimate the three transmitted symbols

based on the received signals, the channel states, the noise

power and any prior estimates that may be available. This

extraction is also currently required in the uplink of the spe-

cific CDMA systems, where non-orthogonal spreading codes

have been allocated to the users [70]. This is termed as the

problem of Multi-User Detection (MUD).

2) The Classical Algorithms: The optimal Maximum

Likelihood (ML) detector finds the most likely U-user sym-

bol vector, relying on the received signal, on the estimates of

the channels and on the estimated noise power. More specifi-

cally, the ML MUD searches through all legitimate transmitted

multi-user symbol combinations that may have resulted in

the reception of that specific signal and in the end outputs

the most likely U-user symbol vector. As an example, let us

assume that U = 20 users are supported by the system and

that each of them transmits L = 4-ary Quadrature Phase Shift

Keying (QPSK) symbols. Then, the signal received at the BS

18Please note that the mentioned superposition of signals is their addition
in the classical domain, since in a synchronous system the signals arrive
simultaneously. It should not be confused with the superposition of quantum
states.
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TABLE III
THE QUANTUM ALGORITHMS REVIEWED

has been constructed based on only one out of LU = 420

possible combinations. In other words, the ML MUD has to

search through more than one trillion legitimate U-symbol

vectors in order to find the most likely one. In general, the

computational complexity of the ML MUD is on the order of

O(LU ). In an OMA system, where a received signal conveys

the information of a single user, the ML MUD may have an

affordable complexity, which is on the order of O(L).

Next-generation wireless communication systems may

employ iterative receivers in the uplink of a NOMA system.

In iterative receivers, information is allowed to be exchanged

between the MUD and the channel decoders.19 In this case,

an MUD that outputs soft information and also accepts

19Since each of the U users has encoded its own bit information stream
independently, the BS has to employ U channel decoders in parallel.
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TABLE IV
THE QUANTUM ALGORITHMS REVIEWED (CONTINUED)

soft estimates as input should be used. The optimal Soft-

Input Soft-Output (SISO) MUD is the Maximum A posteriori

Probability (MAP) MUD [6], which outputs bit-based or

symbol-based Log-Likelihood Ratios (LLR). The LLR of a

bit represents the log-domain probability of that bit to have

been 0 or 1, when it was transmitted. Similarly, the symbol

LLR describes the log-domain probability of that symbol to

have been transmitted as one of the legitimate symbols in the

constellation. The MAP MUD creates the LLRs by taking

into account all possible multi-level symbol vectors, requir-

ing a computational complexity on the same order as the ML

MUD [6].

The excessive complexity required by the ML and

MAP MUDs in NOMA systems has driven the research

community to low-complexity sub-optimal solutions, such

as the Minimum Mean Square Error (MMSE) detec-

tor [70], the Zero Forcing (ZF) detectors [70], the Ant

Colony Optimization (ACO) based MUD [77], the Particle

Swarm Optimization (PSO) based MUD [78] and the

SIC [70] MUD.

In the uplink of a multi-user system, the SIC MUD detects

the signal of the user experiencing the best channel first, by

treating as interference the signals of the rest of the users,

which are also present in the superimposed received signal.

Having detected the signal of the best user, it reconstructs

that user’s noiseless transmitted signal and subtracts it from

the received signal. Therefore, only the transmitted signals

of (U − 1) users are left in the composite received sig-

nal. The same procedure is repeated until the signals of all

users are detected. The SIC MUD requires a low complex-

ity on the order of O(L·U), which scales linearly with the

number of users supported. However, it does not perform

well in rank-deficient scenarios and when the channel con-

ditions of different users are similar. In the latter case Parallel

Interference Cancellation (PIC) is preferred [70]. Therefore,

when SIC is employed, appropriate scheduling is required for

matching groups of users together in order to share the medium

simultaneously.

3) The Quantum Algorithms: In order to reduce the com-

putational complexity of the optimal ML detection, which

requires a full search, the DH QSA of Section II-B8 was

employed in [56] and [62], where it was demonstrated that

it approaches the optimal performance. The operation of the

DH QSA in the problem of MUD is described in Fig. 16. The
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Fig. 15. The problem of Multi-User Detection in the uplink of a synchronous multiple access system.

Fig. 16. Inside a quantum multi-user detector.

DHA employed in the QMUDs makes multiple calls to the

BBHT QSA. Grover’s QSA is not used, but it is included for

completeness, since the BBHT QSA uses the same Oracle O,

but may even be capable of finding a solution with a ∼100%

probability, when the number of solutions is unknown. The

QMUD may also be performed on a subcarrier basis in a multi-

carrier system. The DHA processes the signals received yq at

all the receive AEs on the qth subcarrier, along with the chan-

nel state estimates Hq , the noise’s variance N0 and the a priori

LLRs Lm, apr (b̂). After it completes its initial procedure, the

DHA exchanges information with a classical processing unit,

which determines whether the DHA should or should not be

called again, while additionally determining its search space.

Finally, the QMUD outputs the calculated a posteriori LLRs

Lm, apo(b̂).
In [62], a deterministic initialization of the DH QSA was

proposed for exploiting the low-complexity Zero Forcing (ZF)

and Minimum Mean Square Error (MMSE) [79] detectors.

More specifically, instead of randomly initializing the DH

QSA, initially a ZF or MMSE detector is employed and its out-

put is used as the initial guess of the DH QSA. This was shown

to further reduce the complexity of the QMUD. Moreover, an

early-stopping criterion was proposed in [62], where the DH

QSA is terminated after a specific number of Grover itera-

tions, without degrading the Bit Error Rate (BER) performance

of the system. The specific number of Grover iterations used

for the early-stopping criterion was found via simulations and

histograms.

When iterative detection is employed at the base station,

a SISO MUD should be used in order to exchange LLRs

with the SISO decoders. Therefore, the DH QSA-based hard-

output QMUD is not suitable. In [56] and [80], a SISO

QMUD was proposed based on the QWSA of Section II-B14,

exhibiting near-optimal performance, while requiring fewer
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CFEs20 (CFE) than the MAP MUD. In order to calculate an

LLR, two weighted sums have to be calculated; one for the

LLR’s numerator and one for its denominator. The MAP MUD

evaluates the Cost Function (CF) for all legitimate multi-level

symbols. By using the QWSA twice, we may estimate the

weighted sums requiring a lower computational complexity.

Please note that there is a performance vs. complexity trade-

off, when using the QWSA, due to the control register of the

QPEA of Section II-B5. In other words, if we employ more

qubits at the control register, a higher precision is achieved

during the estimation of the weighted sums, hence resulting

in a more accurate LLR value. However, a higher complexity

is required, since the complexity of the QWSA scales with the

size of the control register [56].

In [80] and [81] another SISO QMUD was proposed, relying

on an amalgamation of classical processing and the DH QSA.

The SISO QMUD was demonstrated to achieve near-optimal

performance with respect to the MAP MUD, while requiring

substantially fewer CFEs. The DH QSA-based SISO QMUD

employs the DH QSA multiple times in different databases,

in order to create a pool of the “k-best”21 multi-level symbols

of each weighted sum of each LLR. By classically processing

the values found, we are able to estimate the weighted sums

of the LLRs and hence to attain a near-optimal performance.

Please note that even though the precision of the weighted

sums, and hence the LLRs, is lower than that achieved by the

QWSA QMUD and the MAP MUD, it is sufficiently close to

the real values for the channel decoders to successfuly decode

each user’s bits. Therefore, since a SISO MUD or QMUD

is always followed by channel decoders, the DH QSA-based

QMUD of [81] achieves a near-optimal performance, while

imposing a lower complexity than the MAP MUD.

B. Joint Channel Estimation and Data Detection

1) The Problem: In the uplink of wireless communications

system, accurate channel estimation has to be performed at

the base station in order to predict and counteract the effect

of the channel, when the signal arrives [79], [82], [83]. In a

multi-user NOMA system, all channels between the antennas

of all users and the antennas of the base station have to be

accurately estimated, otherwise the performance of the MUD

would be degraded.

In a multi-carrier system like OFDM, the multi-path channel

may be estimated either in the time domain or in the frequency

domain. For example, let us assume the scenario where the

Power Delay Profile (PDP) of a channel exhibits four paths

and that we partition the available bandwidth in 512 non-

dispersive subchannels. The channel envelope of each of the

four paths may be deemed to fade independently. Assuming

that the channel envelope at each path is quasi-static22 during

20The cost function in the MUD problem is the Euclidean distance of the
received, noisy multi-level symbol from a legitimate multi-level symbol from
the multi-user constellation.

21By “best” here we mean the multi-level symbols of each weighted sum
that correspond to the highest CF values.

22In an OFDM system, a channel is quasi-static, when its channel gain
remains constant during an OFDM symbol period. The channel gain between
two OFDM symbols may be different, but still constant within their OFDM
symbols.

the channel estimation process, we may either estimate the

four time-domain (TD) channel gains of the four paths, or the

512 frequency-domain (FD) subcarrier gains, which represent

the Fast Fourier Transform (FFT) of the time-domain PDP,

having taken the delay spread of the channel and the sampling

frequency into consideration. Typically the FD channel is rep-

resented by the terminology of FD CHannel Transfer Function

factor (FD-CHTF) [71]. Naturally, a lower complexity may be

required for estimating the four time-domain channel gains,

than for estimating the channel gain of each subcarrier.

However, the FD channel estimation lends itself to joint

channel and data estimation, where the FD channel estima-

tion problem may be thought of as a search for the true

continuous-valued subcarrier channel gains. This prohibits the

employment of the full search approach, which was previously

followed in the MUD problem of Section III-A, since an

infinite-sized database should be constructed. The joint chan-

nel estimation and data detection problem may however also

be considered as two separate problems, the former being

dedicated to searching for continuous-valued channel gains,

while the latter to searching for discrete-valued multi-user

symbols.

2) The Classical Algorithms: In LTE [84], FD pilot sig-

nals are transmitted on specific subcarriers of certain OFDM

symbols, enabling the user or the base station to estimate

the channels for the rest of the subcarriers with the aid of

interpolation in the downlink or uplink, respectively. The esti-

mated channel states may be used for the subsequent OFDM

information symbols between a pair of OFDM symbols having

pilot-subcarriers without any change at the cost of accepting

a performance degradation, but not imposing any additional

complexity. Alternatively, the estimated subcarrier gain may

be used for predicting the subcarrier gains of each subsequent

OFDM symbol using linear predictions.

Furthermore, as alluded to above, channel estimation may be

combined with data detection for improving both the estima-

tion accuracy of the subcarrier gains and of the detection error

probability of the transmitted data, resulting in a joint channel

estimator and data detector [85]–[88]. In a multi-user scenario,

the MUD replaces the single-usedr symbol detector, hence

joint channel estimation and MUD may be used [89]–[93].

In the iterative receiver of a NOMA system, information may

be exchanged between the channel estimator, the MUD and

the channel decoders for further increasing the channel esti-

mation’s accuracy and the channel decoding performance [90].

The Decision-Directed Channel Estimation (DDCE) [94] used

in multi-carrier systems initially estimates the FD channel

gains based on a pilot OFDM symbol, as depicted in Fig. 17.

Initially, the super-imposed pilot signals are used for perform-

ing conventional, pilot-assisted channel estimation, associated

with the received OFDM symbol period. Based on those chan-

nel estimates, the Channel Impulse Response (CIR) prediction

filter predicts the channel states that would correspond to the

next OFDM symbol, which now carries data. The output of

the CIR prediction filter becomes the initial output of the

quantum channel estimator. When the next OFDM symbol

is received, it invokes the MUD using the predicted channel

gains.
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Fig. 17. System model of a joint channel estimation and multi-user detection
receiver in the uplink of a multi-carrier NOMA system employing decision-
directed channel estimation.

It then selects the specific multi-level symbols, which were

detected sufficiently reliably,23 and assumes that these were

known pilot symbols. Hence it refines the channel estimation

process based on those “hypothesized” pilot symbols. In other

words, the DDCE combines the separate problems of channel

estimation and data detection by employing them sequentially,

allowing them to “lend” their output to the other process, in

order for it to perform a search in a more accurately con-

structed database, as exemplified in Fig. 17. The updated FD

channel gains may be used for performing a refined MUD pro-

cess for the same OFDM symbol for improving the estimated

LLRs. Similarly, the updated LLRs can be used aftewards for

improving the accuracy of the FD channel gains even further.

The number of iterations between the channel estimation pro-

cess and the MUD constitute a design parameter. The DDCE

aims for reducing the pilot overhead, and hence increasing the

system’s effective throughput. Naturally, it imposes a higher

complexity than the purely pilot-based channel estimation.

In order to reduce the complexity of the joint channel esti-

mation and data detection, heuristic search algorithms may be

used instead of a full search.24 In [95] a GA-aided joint chan-

nel estimator and data detector was proposed, while in [91]

the Differential Evoluation Algorithm (DEA) was employed

for joint channel estimation and data detection. In [93] vari-

ous heuristic algorithms, such as the GA, the Particle Swarm

Optimization (PSO) and the Repeated Weighted Boosting

Search (RWBS) algorithm were used instead of a full search

for the true continuous-valued channel gains, as well as for the

full search of the discrete-valued symbol-space of the MUD.

As another design option, a factor-graph based approach was

used for joint channel estimation and MUD in MC-IDMA

systems in [92]. By exploiting the sparsity of the wire-

less channels, Prasad et al. [88] proposed a methodology

23Please recall that a symbol’s LLR value may be considered an indicator
of how reliably it has been detected.

24The full search here is meant in the context of finding the channel gain
that minimizes a cost function designed based on the maximum likelihood
criterion.

that requires fewer pilot symbols, without degrading the

performance.

3) The Quantum Algorithms: In [96] the Quantum

Repeated Weighted Boosting Search (QRWBS) algorithm was

proposed for reducing the computational complexity of the

classical evolutionary algorithms-based joint channel esti-

mation and data detection, without degrading the system’s

performance. To elaborate a little further, the QRWBS is an

amalgam of the DH QSA and the RWBS algorithm. Both

the RWBS and the QRWBS algorithms create a population

of agents, which are transformed to better agents via multiple

generations. Please note that an agent in the context of channel

estimation represents a continuous-valued FD channel gain,

while in the context of data detection it represents a discrete-

valued symbol. Therefore, a continuous-valued QRWBS and a

discrete-valued QRWBS are employed in [96] for solving the

two problems. An agent is deemed to have a higher fitness

than another agent, if its channel gain or symbol corresponds

to a lower cost function value than the other agent’s.

The maximum affordable number of generations25 is Ξ In

both the RWBS and the QRWBS. In the classical RWBS a

specific number of agents P is created during each generation.

During the ξth generation, where ξ = 1, . . . ,Ξ, the agents are

classically processed in order to create a new agent, which

is termed as the best agent or winner of that generation. The

lower the cost function values of the P agents during the ξth

generation are, the lower the cost function value of the best

agent of that generation will be. Therefore, it is beneficial

to create populations, which have agents with as low cost

function values as possible. The best agent of a generation

is subsequently used as the basis for creating new agents for

the next generation. Therefore, the population of the (ξ+1)st

generation is created randomly in the vicinity of the best agent

of the ξth generation.

The QRWBS algorithm obeys the same procedure, but dif-

fers in the creation of the population of each generation.

Instead of creating Z agents in each generation, it creates a

much higher number of agents ZQ ≫ Z . It then employs

the DH QSA in that database of ZQ agents in order to find

the specific agent of the population that corresponds to the

minimum cost function value of that generation. As discussed

in Section II-B8, in the process of searching for the minimum

value, the DH QSA also queries the database for other entries,

which are later proven not to be the minimum ones. However,

due to the particular nature of the DH QSA, most of the extra

observed agents have a cost function value close to the min-

imum one in the database. All these entries are used in the

QRWBS in order to form a population of Zξ ≪ ZQ agents.

The subscript ξ of Zξ reflects the fact that due to the probabilis-

tic nature of the DH QSA, the population size may differ from

one generation to the next. Both the continuous-valued and

25In an evolutionary algorithm, there are individuals and generations. Each
individual takes the form of a legitimate solution to the search problem.
Individuals that are created at the same “round” or “iteration” belong to the
same generation. The subsequent generations apart from updated individuals,
who rely on the previous generations’ individuals in order to take the form
a better solution. After a number of generations the evolutionary algorithm
stops and the best individual is the output of the algorithm.
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Fig. 18. The problem of Multi-User Transmission in the downlink of a multiple access system.

discrete-valued QRWBS employed for channel estimation and

MUD, respectively, in the context of a joint channel estima-

tion and MUD receiver was shown to outperform its classical

counterpart [96].

C. Multi-User Transmission

1) The Problem: Let us now consider the dual counter-

part of MUDs. In a nutshell, given the FD-CHTF of all users,

the MUD detects the multi-user symbol vector. By contrast,

the Multi-User Transmitter (MUT) relies on the FD-CHTF of

all users signalled back to the BS. Explicitly, the multi-user

symbol vector is “pre-distorted” by the MUT of the BS invok-

ing the FD-CHTFs of all users for ensuring that after passing

through the predicted channel each user receives a symbol-

vector having the single non-interfered symbol destined for it.

The duality of MUDs and MUTs was discussed for example

by [97]. The substantial benefit is that a low-complexity single-

user detector may be invoked by the mobile user terminal.

This MUT principle is applicable both to OMA and NOMA

systems. Hence in the downlink of a NOMA system, the base

station may appropriately combine the different information

symbols destined for the users supported and transmit a single

multi-user signal, in order to increase the system throughput

as depicted in Fig. 18 [5], [97]. It is up to each user then to

detect and decode their own information upon the reception

of the combined multi-user symbol vector. Since the user ter-

minals do not have the same complexity capabilities as the

base stations, the complex processing should be performed

at the base station’s side. Let us assume that the base sta-

tion desires to transmit a multi-user symbol vector, where

each entry of the vector corresponds to a different user. To

elaborate a little further, the multi-user transmission problem

is that given the symbol vector, as well as the system and

channel characteristics, we should find a (U × Nt )-element

Transmit Pre-Coding (TPC) matrix P, where U is the num-

ber of users and Nt the number of transmit antennas at the

base station, in order to multiply with the information symbol

vector as in

s = P · x, (31)

1where x is the (U × 1)-element multi-user vector and s is the

transmitted (Nt×1)-element vector. Again, by doing so, when

each user receives the composite multi-user symbol vector,

they can detect and decode their own symbol by employ-

ing a low complexity single-user detector. Different criteria

may be used for finding the optimal TPC matrix, such as the

MMSE [98] or the Minimum Bit Error Ratio (MBER) [99]

criteria.

2) The Classical Algorithms: Linear channel inversion

algorithms, such as the ZF and the MMSE algorithms [98]

perform adequately in underloaded or in full-rank systems,

where the number of antennas at the base station is higher

than the number of users supported. However, in challenging

rank-deficient systems, where the number of users supported

is higher than the number of antennas at the base station, more

powerful non-linear algorithms should be used for performing

the transmit precoding process.

In the 5G NOMA systems, the precoding matrix is expected

to be calculated based on the distance between the users

and the base stations, as well as on their channels’ qual-

ity [5], [73], [74]. More specifically, assuming a two-user

system, a higher power is allocated to the symbol of the user,

who experiences the worse channel and higher losses. This

way that user is able to detect and decode its own symbol,

treating the other user’s symbol as low-power interference. On

the other hand, the user experiencing the better channel has

received a signal with high multi-user interference, due to the

worse user’s symbol having been allocated a higher portion

of the power. Therefore, the higher-power symbol is detected

first, whilst treating the lower-power symbol as interference.

Then the detected signal is remodulated and deducted from

the composite signal, leaving the weaker signal behind. This

is termed as Successive Interference Cancellation (SIC) and

it has also been used as an MUD [100] as described in

Section III-A.
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Fig. 19. The resultant legitimate constellation of each user layer, after
applying a perturbation vector.

In [101], the vector perturbation precoding technique was

proposed for the downlink of multiple access systems, where

a vector w is added to the multi-user information symbol vec-

tor before it is transformed into a multi-antenna vector by

multiplying it with the precoding matrix, as encapsulated in

s = P · (x+ w). (32)

Given an already calculated precoding matrix P, the goal of

the perturbation vector is to minimize the required transmis-

sion power, while also minimizing the MMSE or the MBER

criterion. If the average transmission power at the base station

is constant, a scaling factor should be applied to the resultant

symbol vector, since its power will depend on the selected per-

turbation vector. This scaling factor should be signalled to the

receivers through a side channel. Since the perturbation vector

is discrete-valued, it may be considered as shifting the whole

symbol constellation an integer number of times in power as

shown in Fig. 19. As an example in Fig. 19, the specific sym-

bol xu represented by the filled circle of the original QPSK

constellation, which is the closest to the origin, would have

been transmitted as the uth user’s symbol, if no perturbation

vector was applied. When that symbol is subjected to the per-

turbation wu = 1+ j , the top left filled circle (xu + wu) will

be transmitted instead for the sake of minimizing the transmis-

sion power and the interference at the receiver. This operation

is performed for each user’s symbol, hence the jointly optimal

perturbation vector should be found. A simple modulo opera-

tion on the perturbed symbol vector may recover the original

symbol vector.

Therefore, using the above-mentioned scaling factor and a

low-complexity modulo operation is sufficient at the users in

order to map their received signals to the original constella-

tion [101], [102]. The high-complexity part of this problem is

to search for the optimal discrete-valued perturbation vector

w of (32). Alternatively, one can immediately search for the

optimal continuous-valued transmit vector s of (32).

A joint block diagonalization and vector perturbation

multiple access downlink techinque was proposed in [103].

Fig. 20. The design methodology for the vector perturbation precoding
for MUT.

Furthermore, Yao et al. employed a discrete-valued PSO algo-

rithm for finding the perturbation vector that minimizes the

MBER criterion in [104], while in [99] a continuous-valued

PSO algorithm was proposed for further improving the out-

put of the discrete-valued PSO algorithm. It should be noted

that even though the perturbation vector is discrete-valued,

the eventually transmitted signal vector is continuous-valued,

therefore a continuous-valued fine tuning of the output of the

discrete-valued PSO may reduce the system’s BER even fur-

ther. The system model of the vector perturbation precoding

technique is shown in Fig. 20. After the precoding matrix is

estimated based on the known symbol vector x, the channel

states and a selected criterion (such as the MMSE criterion),

the optimal – with respect to a selected criterion – perturbation

vector w is found using discrete-valued classical or quantum

search. The found perturbation vector determines a transmitted

vector s. A continuous-valued classical or quantum search may

be employed for further fine-tuning the resultant transmitted

vector s.

Masouros et al. [105] proposed a sphere search technique

for reducing the complexity of searching for the optimal

perturbation vector, with the objective of minimizing the trans-

mission power of the base station. Masouros et al. [102]

conceived a vector perturbation algorithm for improving the

system’s performance, when there is a finite-precision feed-

back of the scaling factor from the base station to the users,

mainly due to the indispensible quantization prior to transmis-

sion. The vector perturbation precoding methodology was also

employed in the downlink of Coordinated Multi-Point (CoMP)

systems [106].

3) The Quantum Algorithms: In [107], the discrete-valued

and continuous-valued Quantum-assisted Particle Swarm

Optimization (QPSO) algorithms were proposed in the con-

text of finding the optimal perturbation vector and the optimal

transmitted vector, respectively, as depicted in Fig. 20. Both

the discrete-valued and the continuous-valued QPSO algo-

rithms combine the DH QSA with the classical PSO algorithm.

The classical PSO algorithm creates a population of Z particles

during each of the Ξ generations. Each particle is associated

with a position and a velocity. The position refers to a legit-

imate input to the CF, or in other words, an entry in the

database. The velocity describes the rate and the direction of

the change of its position between two successive generations.

During each generation of the classical PSO algorithm, the

CF is evaluated for the positions of all particles in the specific

generation. Their position and velocity calculated for the sub-

sequent generation are updated based on their current position
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and velocity, as well as on the current generation’s “best” par-

ticle’s position and velocity.26 Therefore, a full search of each

generation’s population has to be performed in order to find

the best particle.

The QPSO algorithm employs the DH QSA for finding the

best particle during each generation of both the discrete-valued

and the continuous-valued QPSO algorithms. This way we are

not only able to efficiently search for the best particle, but due

to the trial-and-error nature of the DH QSA, only a subset

of the original population is available to us. This procedure

may be considered as selecting a few of the elite high-fitness

particles for creating the population. As shown in [107], both

the discrete-valued and continuous-valued QPSO algorithms

outperform their classical counterparts for the same number

of CF evaluations.

D. Multi-Objective Routing

1) The Problem: So far we have primarily focused our

attention on network structures, where the transmission of the

messages relies on a single hop, from the mobile users to

the BS and vice versa. However, this is not always the case,

since occasionally multihop communications are employed

to reach remote nodes, which would otherwise be inacces-

sible [108]. These particular nodes have random locations

and limited resources in terms of bandwidth and power and

thus they rely on optimal routing for the sake of maximizing

their performance. Optimal routing relies on a delicate balance

amongst several Quality of Service (QoS) criteria apart from

the ubiquitous BER performance, which was considered as the

primary optimization objective in the majority of the previous

applications. On one hand, mobile nodes rely on their bat-

teries having for their communications with the rest of the

network, bringing the optimization of their power consump-

tion into the limelight as well [109]. This concept is commonly

referred to as “green” radio [110]. On the other hand, the

widespread use of lip-synchronized audio and video stream-

ing resulted in considering both the delay and the achievable

rate [111] as additional QoS criteria. Over the years sev-

eral other metrics have been proposed such as the routing

overhead [112], the control-channel cost [113] or the commu-

nication security [114]. Consequently, it becomes clear that

routing optimization has to cater for multiple QoS criteria.

Most of the studies in the literature utilize single-component

aggregate functions, which combine multiple QoS criteria. In

this context, one of the most prominent optimization met-

rics is the network lifetime [115]. In fact, this specific metric

encapsulates several optimization objectives [116], such as the

power consumption, the nodes’ battery levels and the route’s

delay. Additionally, the Network Utility (NU) also takes into

account the routes’ achievable rate [117], hence providing a

more holistic perspective on the routing problem.

Despite the numerous single-objective approaches advo-

cated in the literature, focusing on a single requirement may

unduly degrade all the rest of the metrics. This problem may

26Here, by “best” particle we mean the particle in the current population,
whose position yields the minimum CF value.

be mitigated [119] by using a multi-objective approach utiliz-

ing the concept of Pareto optimality27 [120] for evaluating the

fitness of multi-objective problems. Likewise, all the require-

ments considered may be optimized jointly without the need

for user-defined parameters in order to aggregate the differ-

ent design objectives [121]. In this way, we end up with a

set of Pareto-optimal solutions, which cannot improve their

individual objectives without degrading the rest. Based on

this approach, our ultimate goal is to identify the entire set

of Pareto-optimal routes from a database of L routes, given

a set of QoS requirements. To elaborate further, an illustra-

tive example is shown in Fig. 21, where a fully-connected

Heterogeneous Network (HetNet) [118] is portrayed. In this

specific scenario, the Source Node (SN) has to transmit its

message to the Destination Node (DN) through a cloud of het-

erogeneous mobile Relay Nodes (RN). Note that the DN acts

as a cluster head and has access to a quantum computer for

employing quantum-assisted routing optimization. This spe-

cific topology has been studied in [65], [66], [122], and [123],

where the following Utility Vector (UV) f(x) has been utilized:

f(x ) = [Pe(x ),D(x ),PL(x )]. (33)

Observe in Eq. (33) that the routes’ end-to-end BER Pe(x ),
their end-to-end delay D(x) and their total power dissipation

PL(x ) are jointly minimized under the Pareto optimality prin-

ciple. This process involves a complexity on the order of

O(L2) [65], when using exhaustive search. However, the total

number L of routes increases exponentially with the number

of nodes [124], as we can observe in Fig. 22, hence rendering

the problem NP-hard. Consequently, sophisticated methods are

required for addressing the multi-objective routing problem.

2) The Classical Algorithms: A plethora of single-objective

studies exist in [110], [116], [117], and [125]–[131], each

addressing different routing aspects. In a nutshell, these

specific studies consider the optimization objectives in a

single-component aggregate function in an attempt to optimize

the latter using either a heuristic or a formal systematic

optimization method. To elaborate further, several of these

studies [110], [125]–[127] utilize Dijkstra’s algorithm [132]

for the sake of identifying the optimal routes. Explicitly, this

technique is capable of approaching the optimal routes at the

cost of imposing a complexity on the order of O(E3), where

E corresponds to the number of edges in the network’s graph.

For instance, Zuo et al. [126] employed this specific algorithm

for optimizing the route’s energy efficiency in the context of

wireless ad-hoc networks. Hu et al. [125] utilized Dijkstra’s

algorithm for minimizing both the power consumption and the

delay, quantified in terms of the number of hops, in socially-

aware networks. Additionally, Dehghan et al. [127] adapted

this specific algorithm to the problem of cooperative routing

and attempted to maximize the route’s energy efficiency.

27In multi-objective routing, each route is now associated with a Utility

Vector (UV) f(x) = [f1(x), . . . , fn (x)], where fi (x) corresponds to the
i-th optimization objective out of n objectives in total. For minimization
(maximization) problems, a specific route is dominates another if all of its
objectives are strictly lower than (greater than) the respective objectives of
the second route. Hence, a route is then considered as Pareto-optimal if there
exist no other routes dominating it.
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Fig. 21. Exemplified topology for routing optimization in a Heterogeneous Network (HetNet) [118].

The beneficial properties of convex optimization [133] have

also been exploited in the context of routing optimization.

To elaborate further, Dall’Anese and Giannakis [128] trans-

formed the non-convex routing problem of cognitive random

access networks into a convex one using successive convex

approximations for the sake of minimizing both the routes’

Packet Loss Ratio (PLR) and the resultant outage probabil-

ity. Additionally, Yetgin et al. [129] maximized the network

lifetime in the context of Wireless Sensor Networks (WSN)

using a similar approach. Based on this specific metric,

Abdulla et al. [130] have maximized the lifetime of WSNs

by introducing a range of Hybrid Multihop Network (HYMN)

parameters. The so-called Network Utility [131] also consti-

tutes a meritorious single-component optimization.

The employment of Pareto optimality comes at the cost of

increased complexity and thus primarily heuristic evolution-

ary methods have been employed for the sake of making the

problem tractable. In fact, there are some comprehensive stud-

ies in [124] and [135]–[138], each investigating networks from

a diverse perspective using the multi-objective approach, while

relying on evolutionary algorithms. For instance, both the

Non-dominated Sorting Genetic Algorithm II (NSGA-II) and

the Multiobjective Differential Evolution Algorithm (MODE)

have been invoked in [124] for optimizing their end-to-end

delay and power dissipation of transmission routes established

Fig. 22. Total number L of Hamiltonian routes as a function of the number
Lnodes of nodes of a HetNet.

in WSNs. Additionally, the NSGA-II has been employed

in [135] for satisfying the same QoS requirements in context

both of the ubiquitous Voice over Internet Protocol (VoIP)

and for file transfer in WSNs. Moreover, Perez et al. [136]

minimization of the WSN’s deployment cost by using a

multi-objective model for optimizing both the total energy
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Fig. 23. The BBHT-QSA chain process used in [65], [66], [122], and [134] for identifying a single Pareto-optimal route.

dissipation and the number of deployed sensor nodes in WSNs.

Martins et al. [137] employed a hybrid multi-objective evo-

lutionary algorithm for solving the Dynamic Coverage and

Connectivity Problem (DCCP) of WSNs subjected to node

failures. Additionally, Pinto and Barán [138] introduced the

concept of Pareto Optimality in the ubiquitous single-objective

ACO and proposed the so-called Multiobjective Max-Min Ant

System (MMAS) for solving the multi-objective mutlicast

routing problem.

3) The Quantum Algorithms: The application of the

aforementioned multi-objective heuristics results in reduced

performance due to their tendency to convergence to local

optima [65]. Fortunately, quantum computing provides a pow-

erful framework for addressing the multi-objective routing

problem by exploiting the complexity reduction offered by

the QP, while guaranteeing a near-full-search-based accuracy.

In fact, several quantum-assisted treatises have been dissem-

inated in [65], [66], [122], and [134] in the context of the

multi-objective routing problem.

To the best of our knowledge, the first ever quantum-

assisted multi-objective approach to the routing problem is

the so-called Non-dominated Quantum Optimization (NDQO)

algorithm [65]. This specific algorithm extended the DH QSA

of Section II-B8 for solving the Pareto optimality problem for

the sake of successively approaching the Pareto-optimal routes

at a reduced complexity. Assuming a database of L routes in

total, the NDQO algorithm succeeds in identifying the entire

set of Pareto-optimal routes at a complexity on the order of

O(L
√
L), while exhibiting near-optimal routing performance

by exploiting the probabilistic nature of the BBHT QSA. In a

nutshell, the NDQO algorithm invokes the BBHT QSA to con-

clude as to whether a reference route is optimal by searching

for routes that dominate this specific route.

This process is referred to as a BBHT-QSA chain in [65] and

its sub-processes are highlighted in Fig. 23. The BBHT-chain’s

input parameters are shown at the right-hand-side, namely the

nodes’ geo-locations Z, the initial reference route xr and the

nodes’ interference power levels I0. Initially, the BBHT QSA

is invoked for searching for routes that dominate the reference

route xr . The output of this process is the route xs , which is

checked as to whether it dominates xr . This is denoted by the

condition f(xs)  f(xr ), where the operator  corresponds

to the Pareto dominance comparison operator. If the referece

route xr is dominated by xs , xr is then set equal to xs and a

new BBHT QSA is invoked with the updated reference route

value. This process is repeated until the BBHT QSA outputs a

route that does not dominate its reference route, thus ensuring

that the current reference route is indeed Pareto-optimal in the

absence of dominant routes.

Since the BBHT QSA exhibits a ∼100% probability of

correctly detecting a solution as detailed in Section II-B7,

some sub-optimal routes may be erroneously classified as

being Pareto-optimal due to BBHT QSA’s inability to guar-

antee 100% probability of correctly detecting a route that

dominates the reference route. Therefore, the NDQO algo-

rithm exhibits a modest error floor owing the low-probability

inclusion of sub-optimal routes into the set of Pareto-optimal

routes. Its error floor has been mitigated by its succes-

sor, namely the so-called Non-dominated Quantum Iterative

Optimization (NDQIO) algorithm [66], where a repair pro-

cess guaranteeing the identification of only true Pareto-optimal

routes has been proposed. The NDQIO algorithm succeeds in

further reducing the complexity imposed, which is quantified

on the order of O(LOPF

√
L), with LOPF corresponding to the

number of Pareto-optimal routes, while reducing the associated

performance error floor to infinitesimally low levels.

An additional source of complexity reduction, namely

that of the database correlation exploitation, has been com-

bined with the quantum parallelism for the sake of fur-

ther complexity reduction. Explicitly, it has been con-

firmed by Zalka [61] that Grover’s QSA and its variants

are optimal in terms of the number of database queries

in uncorrelated databases. Therefore, database correlation

exploitation would significantly increase the efficiency of

quantum parallelism. In this context, the so-called Multi-

Objective Decomposition Quantum Optimization (MODQO)

algorithm [134] has been proposed for multi-objective rout-

ing in socially-aware networks [125]. Note that the topology

considered in [134] is different from that of Fig. 21, since

multiple pairs of SNs and DNs are considered. In this sce-

nario, the MODQO algorithm exploited the specific property

that the Pareto-optimal route combinations are constituted by

individual Pareto-optimal routes. Therefore, by exploiting this

observation, the search space has been partitioned into sev-

eral less correlated databases, where the quantum parallelism

framework proposed in [66] can be more efficiently exploited.

As for its complexity, the MODQO algorithm succeeds in

identifying the entire set of Pareto-optimal route combina-

tions at a complexity, which is on the orders of O(
√
L) and

O(LMR

√
L+ L

2LMC

MR ) for the best- and worst-case scenarios,
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respectively, where LMR and LMC correspond to the number

mesh routers and clients, respectively. Note that the classical

exhaustive search would impose a complexity on the order of

O(LLMC ), where we have O(L) ≫ O(LMR), hence rendering

the problem unsolvable in polynomial time.

Apart from the exploiting the correlations in the formation

of Pareto-optimal route combinations, the potential correla-

tions in the formation of Pareto-optimal routes has been inves-

tigated in [122] and [123]. To elaborate further, it has been

proven in [122] that Pareto-optimal routes exclusively consist

of Pareto-optimal sub-routes. Based on this observation, the

so-called Evolutionary Quantum Pareto Optimization (EQPO)

algorithm [122] and an irregular trellis graph [139] has

been proposed for the sake of guiding the search, hence

effectively transforming the search space into a series of

weakly correlated databases with the aid of dynamic program-

ming [140], [141]. A quantum-assisted feed-forward process

resembling the ubiquitous Viterbi algorithm [142] is then

invoked for the sake of identifying the Pareto-optimal routes

by processing the trellis-stages. More specifically, the NDQIO

algorithm is activated for each trellis-stage to identify the

respective Pareto-optimal routes. The EQPO algorithm suc-

ceeds in identifying 99.9% of the set Pareto-optimal routes

at a complexity order of O(L
3/2
optL

2
nodes), while exhibiting

a performance associated with a low heuristic error floor.

Therefore, since the total number L of routes has an exponen-

tial relationship with respect to the number Lnodes of nodes, as

seen in Fig. 22, a substantial complexity reduction is achieved

compared to full-search-based NDQO and NDQIO algorithms.

Apart from the aforementioned treatises, which primarily

rely on Grover’s operator and thus harnessing the power

of quantum parallelism, some others exploit the benefi-

cial complexity reduction offered by the quantum tunneling

effect [16]. Explicitly, the particular quantum algorithms rely-

ing on quantum tunneling are referred to as quantum anneal-

ers [143], [144]. More specifically, a quantum annealer may be

treated as a sampler, which approximates the global optimum

of a function or of a database with the aid of quantum tunnel-

ing. In the context of multi-objective routing, Wang et al. [145]

proposed a quantum annealing algorithm designed for optimiz-

ing the scheduling of the wireless links in interference-limited

networks. The proposed quantum annealing algorithm suc-

ceeded in jointly optimizing both the network’s throughput as

well as its interference, whilst imposing a substantially lower

complexity than its classical counterpart, namely the simulated

annealing algorithm.

E. Breaking Public-Key Cryptography Schemes

1) The Problem: Public-key cryptosystems, such as the

RSA [146], named after its creators Rivest, Shamir and

Adleman, encrypt data using a public key, which may be

eavesdropped by anyone, and they decrypt data using a pri-

vate key. Node A randomly picks two large prime numbers.

Based on these two prime numbers, a public key and a private

key are generated. The public key can be used by any other

node for encrypting their data and transmitting it back to the

node A. However, only node A has the private key, which is the

only key that can be used for correctly decrypting the received

data. Please note that none of the transmitting nodes should be

able to decrypt the data they encrypted themselves. The same

applies to any potential eavesdroppers, who have obtained both

the public key and the encrypted messages from the transmit-

ting nodes. This means that no processing of the public key

should lead to any information concerning the private key.

However, due to the process invoked for creating the public

and the private keys, if the two prime numbers, which were

used for creating the keys are obtained by an eavesdropper,

the private key can be replicated and the information mes-

sages can be decrypted. This is termed as the RSA problem,

which reduces to the following factorization problem. Given

a large number N, we have to find its two prime factors.

Even though it would be beneficial if a solution did not exist

to the RSA problem, creating algorithms that are able to break

a cryptosystem inevitably provides insights for constructing

post-quantum cryptosystems.

2) The Classical Algorithms: Integer factorization tech-

niques may be used for finding the prime factors of an integer.

The most efficient classical algorithm of solving an integer

factorization problem is the quadratic sieve [147], when the

number to be factored is less than 332 bits long. For higher

numbers, the general number field sieve [147] outperforms all

other classical algorithms, but it imposes a high computational

complexity.

3) The Quantum Algorithms: Shor’s algorithm [33] can be

used for efficiently solving the RSA problem. As discussed in

Section II-B4, Shor’s algorithm employs a classical subroutine,

which resembles the operation of the quadratic sieve, while the

QPEA [48] of Section II-B5 is used for finding the necessary

period of the function employed. Shor’s algorithm achieves an

exponential speed-up, over the general number field sieve, as

a benefit of the inherent parallelism of quantum computing. In

2012, the number 21 was factored to its prime factors 3 and 7

using Shor’s algorithm [148].

F. Indoor Localization

1) The Problem: The problem of indoor localization is

to estimate the position of a user in a room, based on the

user’s transmit or received signals [149]. More precisely, the

signals’ Received Signal Strength Indicator (RSSI), Time of

Arrival (ToA), Angle of Arrival (AoA), or Time Difference

of Arrival (TDoA) may be exploited for estimating the user’s

location [150]. The localization’s accuracy is enhanced, when

the floor plan of the room is known. The localization problem

is illustrated in Fig. 24.

Due to the paradigm shift to mm-Wave communica-

tions [151]–[153], pencil beams may be formed in order to

minimize the multi-user interference and to increase the data

rate [154]. In order to use very thin beams, accurate user

localization is necessary.

Accurate localization may also be used for track-

ing the movement of a user in a room. Visible Light

Communication (VLC) systems [155]–[157] may exploit accu-

rate localization, since they will be able to form more accurate

clusters of access points for serving the users supported by
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Fig. 24. The indoors localization problem, where an accurate position of the
user has to be estimated. (a) Uplink localization, where a mm-Wave anchor
processes the received line of sight path, as well as the reflected paths. Based
on the RSSI, the ToA and the AoA, the mm-Wave anchor may initially reduce
the search space. Then, it may employ the fingerprinting methodology for
comparing the received signals to those stored in a pre-calculated database.
(b) Downlink localization using a VLC system, where each LED panel is
switched on and off sequentially. The RSSI at the user by each LED access
point is compared to a pre-calculated database, following the fingerprinting
methodology. Quantum search may be employed for searching in the databases
in both the downlink and the uplink localization methods.

the system. More specifically, since multiple Light Emitting

Diodes (LED) will be installed in a room, the accurate local-

ization of users may support efficient spatial MIMO techniques

for increasing the data rate of the downlink. Accurate tracking

of the user’s movement would help the system maintain the

throughput attained.

2) The Classical Algorithms: Ultra WideBand (UWB)

systems may also be employed for achieving accurate local-

ization [149], [158]–[164] by exploiting the signals’ inherently

short symbol duration and the ToA of its Line Of Sight (LOS)

component. If the floor plan of the room is known, the

Multi-Path Components (MPC) of the signal’s PDP may

also be exploited for increasing the accuracy of the local-

ization [158], [163], [164]. More specifically, the TOA of the

LOS path and of the MPCs may be jointly processed in order

to extract a small subset of legitimate areas in the room, where

the user may be located, as exemplified in Fig. 24.

VLC-based localization has also been employed, by exploit-

ing the limited coverage of the VLC access point [155], [165].

Based on the fingerprinting approach [166], the room may be

partitioned into small virtual tiles. The localization algorithm

has to determine the center of which specific tile the user is

closest to. This is performed by building a database of the

potentially received signals’ RSSIs, ToAs, AoAs and TDoAs

from each legitimate tile. A suitable CF which would com-

pare the actual received signals to the saved ones at the known

tile-centre positions would determine, which tile is closest to

the supported user. Hence, the localization problem may be

reduced to a search problem. The size of the search space

depends on the size of each tile. The smaller the dimensions

of a tile are, the more accurate the localization will be, but

more tiles exist in the database. Therefore, there is a trade-off

between the performance attained and the complexity imposed.

The triangulation method [166] combines the signals of

three different access points by estimating the distance

between them and the user based on their RSSI and then

estimating the location of the user to be at the intersection

of the three circles. When operating in a system, where the

Signal to Noise Ratio (SNR) is low, using the triangulation

method based on the RSSI may lead to inaccurate localization.

The Global Positioning System (GPS) uses the triangulation

method for localization.

3) The Quantum Algorithms: The DH QSA was combined

with classical processing for performing indoor localization in

the VLC downlink and in the mm-Wave uplink [167]. The

fingerprinting approach is used in both systems. In the mm-

Wave uplink , multiple antennas may be used at the access

point for estimating the AoA. Based on the AoA and the ToA

of the LOS and multipath signals, the initial search space may

be reduced to a subset of surviving tiles, similarly to [158].

The DH QSA is then employed in the resultant database of

CF values, in order to find the particular entry that minimizes

the CF. In this problem, the CF takes into account the signal

received at all antennas of the access point over the LOS path,

as well as over all MPCs, and determines the square distance

from the corresponding values associated with the center of

each tile.

The fingerprinting approach is also used in the VLC down-

link in [167]. Similarly to [155], the signal strength of each

access points is measured and stored in a database, which cor-

responds to a specific tile’s center. Therefore, if there are 64

access points and 90 tiles in the room, there are 90 databases

with 64 entries each. The entries of each database are then

combined and compared to the actual 64 received values at

the user’s true position and the search problem reduces to

that of finding which of the 90 tiles offers the most similar

RSSI from all access points to the actually received ones. The

DH QSA was employed for offering a quadratic reduction in

the associated computational complexity compared to a full

search. Similarly, by appropriately reducing the size of each

tile in order to increase the search space so that the DH QSA

in the larger database requires the same complexity as a full

search in a smaller database, a higher localization accuracy

may be achieved.

In the uplink and downlink localization problems, the

quantum-assisted solutions of [167] achieved an equivalent

performance to the optimal classical methods, while requiring

a lower computational complexity.

G. Big-Data Analysis

1) The Problem: In big-data systems, multiple-feature data

has to be accessed and manipulated. Examples of problems

existing in big-data systems involve classification of the high-

dimensional data based on their features, search problems and

existence problems [168].

In the classification problem [169], the entries of a database

have to be classified into multiple classes, based on their fea-

tures’ values. The classification problem may be divided into

two parts: a) the supervised classification problem, where a

set of already classified data exists and can be exploited for

aiding the classification of the rest of the data, and b) the

unsupervised classification problem, where all entries have to

be classified.
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In a search problem, the index of the entry in a large

unsorted database has to be found. Furthermore, the existence

problem investigates whether there exists a specific entry in a

database or not.

2) The Classical Algorithms: Classical machine learn-

ing [169], [170] can be used for solving both unsupervised

and supervised classification problems [171]. Support Vector

Machines (SVM) [172] may be employed for performing

either supervised or the so-called semi-supervised classifica-

tion [173]. They construct a model based on the classified

training data for accurately predicting the class that new data

should be classified into.

Both the search problem and the existence problem encoun-

tered in unstructured high-volume databases can be classically

solved by a full search, which however often imposes an

excessively high complexity.

3) The Quantum Algorithms: In [174] a Quantum Support

Vector Machine (QSVM) was proposed for performing super-

vised classification in large databases. The QSVM imposes

an exponentially lower complexity than its classical counter-

parts, when the latter are able to classify the same dataset in

polynomial time. To elaborate further, the QSVM reformulates

the classical SVM originally proposed in [175]. Explicitly,

this reformulation transforms the SVM’s quadratic formula-

tion into a system of linear equations, which are in turn solved

by using the HHL algorithm [54] of Section II-B12.

Grover’s QSA [28] of Section II-B6 can be employed for

searching through an unstructured database, whilst achieving a

quadratic speed-up compared to the classical full search. When

the exact position of the desired entry is not required, only the

knowledge of whether that entry exists in the database or not

is wanted, the Quantum Existence Testing (QET) algorithm

of [9] and [176] may be used instead. The QET algorithm

employs the QCA of Section II-B9, which finds the number of

times a desired entry appears in a database. Since in the con-

text of the existence problem we are not interested in finding

the specific number of times a value appears in a database, but

rather if it exists at all or not, the QET algorithm uses fewer

qubits in the control register of the QCA of Fig. 12. This way,

even though a precise estimate of the number of solutions in

a database cannot be obtained the measured control qubits are

non-zero, we are informed that there are indeed any solutions

in the database. When carrying out this task, the QET algo-

rithm imposes a lower complexity than the QCA, which in

indicates a quadratic speed-up over the full search.

IV. OPEN PROBLEMS

A suite of quantum solutions have been proposed for clas-

sical wireless problems. Nevertheless, there are numerous

open problems in both the physical and network layers of

wireless communications systems that may benefit from the

power quantum computing. For example, Coordinated Multi-

Point [177], also referred to as cooperative network MIMO,

is a compelling solution to the problem of degraded user

performance at the cell edge. Based on CoMP, a user will

be simultaneously connected to multiple base stations, which

essentially treat interference as useful information. Quantum

search algorithms [28], [31], [32] may be used in the context

of CoMP for detecting and processing the excessive amount

of information, since the notion of interference will have been

eliminated.

Quantum computing may also be used for improv-

ing the routing performance of drone communications and

networks [180], [181], given their limited battery lifespan

and mission-critical nature. For instance, optimal routes may

be found in drone networks using quantum algorithms, or

when drones are used as emergency base stations, optimal

drone placement planning may be performed by solving the

associated optimization problem.

The multi-objective quantum computing framework

constituted by the algorithms of Section III-D could

be employed for addressing the problem of proactive

caching [125], [182]–[184]. Explicitly, in proactive caching

the packets are buffered in the nodes by carefully considering

their popularity for the sake of reducing both the delay

and the power consumption, which is reminiscent of the

multi-objective routing problem. Additionally, this specific

case study could be undertaken with the aid of machine learn-

ing [185]. In fact, Kapoor et al. [187] have recently proposed

a model for quantum perceptrons, which may constitute

beneficial building blocks for quantum-aided neural networks.

Therefore, it would be worth investigating as to whether

quantum-assisted solutions can be adopted in this context.

In addition to the above-mentioned open problems, novel

quantum solutions may be explored in the specific wire-

less communication problems discussed in this contribu-

tion. For example, Hogg’s heuristic quantum search algo-

rithm [51], [52] may be employed in any database search,

where there exists correlation between the database entries, in

order to reduce the required search time. In the uplink multi-

user detection problem, the constructed database includes the

MSE between the actually received signal and a hypothetical

noiseless received signal that is based on a legitimate symbol

combination. Since there are different symbol combinations

that partially consist of the same symbols, there is correla-

tion in the constructed database. Therefore, Hogg’s heuristic

quantum search algorithm may further decrease the search

complexity imposed.

V. CONCLUSION

In this contribution, we have surveyed the family of quan-

tum algorithms that have been employed for solving realistic

problems in wireless communications faster and more accu-

rately than the available classical solutions. In Section II-A

we have stated the basic characteristics of quantum computing

with the aid of linear algebra and logical gates, reminiscent of

classical computing. Familiarity with the basics of quantum

computing was then exploited for highlighting the quantum

circuits of major quantum algorithms that have been proposed.

We have gathered the investigated quantum algorithms in

Tables III and IV, where we briefly state their application and

description.

Having acquired a feel for the capabilities of quantum com-

puting via the quantum algorithms presented, in Section III,
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we have shifted the focus of our attention to classical wireless

optimization problems. We have opted for discussing each of

the optimization problems, as well as their state-of-the-art clas-

sical solutions. By comparing the presented quantum-assisted

solutions to their classical counterparts, we have argued that

for a specific complexity budget, a performance gain is

observed when the quantum algorithms are used. Similarly,

by employing the quantum algorithms, a specific performance

target may be reached at a lower computational complexity.
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